Skip to main content
Log in

Acidogenic Digestion of Pre-pulping Extracts for Production of Fuels and Bioproducts Via Carboxylate Platform Processing

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hemicellulose extracted from wood prior to processing the wood into paper or composite materials can be a resource for the production of biofuels or bioproducts. Mixed microbial cultures are capable of converting biomass into mixed carboxylic acids, which can be purified as products or converted to biofuels or other biochemicals. Mixed cultures are robust conversion systems and do not require added enzymes to hydrolyze biomass to sugars. We produced mixed carboxylic acids using mesophilic and thermophilic fermentation of raw, unconditioned green liquor and hot water hardwood extracts, as well as baseline sugar solutions. Daily samples were taken from the fermentations and analyzed for composition, pH, and gas volume. The extract digestions were capable of hydrolyzing oligomeric hemicellulose without supplemental enzymes and converting all types of released sugars. Lactic acid was prominent in lower pH systems and acetic acid, the main product at more neutral pH. Compared to thermophilic systems, mesophilic fermentations had higher hydrolysis conversion, carbohydrate conversion, acid yields, and selectivity for C3–C7 acids. Carbon balances on the wood extracts closed to within ±9%. Methane production in all cases was essentially zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Abbreviations introduced in this paper include the following: GL, green liquor; HW, hot water; Aceq, acetic acid equivalent

References

  1. van Heiningen, A. (2006). Converting a kraft pulp mill into an integrated forest products biorefinery. Pulp and Paper Canada, 107, 38–43.

    Google Scholar 

  2. Tunc, M. S., & van Heiningen, A. (2008). Hydrothermal dissolution of mixed southern hardwoods. Holzforschung, 62, 539–545.

    Article  CAS  Google Scholar 

  3. Walton, S., van Walsum, G. P., & van Heiningen, A. (2010). Value prior to pulping: extraction of hemicellulose from hardwood. Industrial and Engineering Chemistry Research, 49(24), 12638–12645.

    Article  CAS  Google Scholar 

  4. Fišerová, M., Opálená, E., & Maholányiová, M. (2013). Kraft pulping combined with green liquor pre-extraction of beech wood. Cellulose Chemistry and Technology, 47(7–8), 583–593.

    Google Scholar 

  5. Um, B.-H., & van Walsum, G. P. (2010). Mass balance on the pulping extraction of northeast mixed hardwood using high performance liquid chromatography and high performance anion exchange chromatography. Bioresource technology, 101(15), 5978–5987.

    Article  CAS  Google Scholar 

  6. Paredes, J., Jara, R., van Heiningen, A., & Shaler, S. (2008). MS influence of hemicellulose extraction on physical and mechanical behavior of OSB. Forest Products Journal, 58(12), 56–62.

    CAS  Google Scholar 

  7. Howell, C., Paredes, J. J., & Jellison, J. (2009). Decay resistance properties of hot water extracted oriented strandboard. Wood and Fiber Science, 41(2), 201–208.

    CAS  Google Scholar 

  8. Pelaez-Samaniego, M. R. Y., Garcia-Perez, T., Lowell, E., & Amidon, T. (2014). Effect of hot water extracted hardwood and softwood chips on particleboard properties. Holzforschung, 68(7), 807–815.

    Article  CAS  Google Scholar 

  9. Al-Dajani, W. W., & Tschirner, U. W. (2008). Pre-extraction of hemicelluloses and subsequent kraft pulping part I: alkaline extraction. Tappi Journal, 7(6), 3–8.

    CAS  Google Scholar 

  10. Al-Dajani, W. W., Tschirner, U. W., & Jensen, T. (2009). Pre-extraction of hemicelluloses and subsequent kraft pulping part II: acid- and autohydrolysis. Tappi Journal, 8(9), 30–37.

    Google Scholar 

  11. Amidon, T. E., Wood, C. D., Shupe, A. M., Wang, Y., Graves, M., & Liu, S. (2008). Biorefinery: conversion of woody biomass to chemicals, energy and materials. Journal of Biobased Materials and Bioenergy, 2(2), 100–120.

    Article  Google Scholar 

  12. Jahan, M. S., Shamsuzzaman, M., Rahman, M. M., Iqbal Moeiz, S. M., & Ni, Y. (2012). Effect of pre-extraction on soda-anthraquinone (AQ) pulping of rice straw. Industrial Crops and Products, 37(1), 164–169.

    Article  Google Scholar 

  13. Jahan, J. S., & Rahman, M. M. (2012). Effect of pre-hydrolysis on the soda-anthraquinone pulping of corn stalks and Saccharum spontaneum (kash). Carbohydrate Polymers, 88(2), 583–588.

    Article  CAS  Google Scholar 

  14. Walton, S., van Heiningen, A., & van Walsum, P. (2010). Inhibition effects on fermentation of hardwood extracted hemicelluloses by acetic acid and sodium. Bioresource technology, 101(1), 1935–1940.

    Article  CAS  Google Scholar 

  15. Walton, S. L., Bischoff, K. M., van Heiningen, A. R. P., & van Walsum, G. P. (2010). Production of lactic acid from hemicellulose extracts. Journal of Industrial Microbiology and Biotechnology, 37, 823–830.

    Article  CAS  Google Scholar 

  16. Um, B.-H., Freedman, van Walsum, G.P. (2011) Conditioning hardwood-derived pre-pulping extracts for use in fermentation through removal and recovery of acetic acid using trioctylphosphine oxide (TOPO). Holzforschung, 65, 51–58

  17. Um, B.-H., & van Walsum, G. P. (2009). Acid hydrolysis of hemicellulose in green liquor pre-pulping extract of mixed northern hardwoods. Applied Biochemistry and Biotechnology, 153(1), 127–139.

    Article  CAS  Google Scholar 

  18. Um, B.-H., & van Walsum, G. P. (2010). Evaluation of enzyme mixtures in releasing fermentable sugars from pre-pulping extract of mixed northeast hardwoods. Applied Biochemistry and Biotechnology, 161(1), 432–447.

    Article  CAS  Google Scholar 

  19. Lau., M.W., Dale B. (2010) Effect of primary degradation-reaction products from Ammonia Fiber Expansion (AFEX)-treated corn stover on the growth and fermentation of Escherichia coli KO11. Bioresource technology, 101, (20) 7849–7855.

  20. Zhang, J., & Lynd, L. R. (2010). Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms. Biotechnology and Bioengineering, 107(2), 235–244.

    Article  CAS  Google Scholar 

  21. Holtzapple, M. T., Davison, R. R., Ross, M. K., Aldrett-Lee, S., Nagwani, M., Lee, C.-M., Lee, C., Adelson, S., Kaar, W., Gaskin, D., Shirage, H., Chang, N.-S., Chang, V. S., & Loescher, M. E. (1999). Biomass conversion to mixed alcohol fuels using the mixalco process. Applied Biochemistry and Biotechnology, 77–79, 609–631.

    Article  Google Scholar 

  22. Holtzapple, M. T., & Granda, C. B. (2009). Carboxylate platform: the mixalco process part 1: comparison to three biomass conversion platforms. Applied Biochemistry and Biotechnology, 156(1–3), 95–106.

    Article  Google Scholar 

  23. Granda, C. B., Holtzapple, M. T., Luce, G., Searcy, K., & Mamrosh, D. L. (2009). Carboxylate platform: the mixalco process part-2: process economics. Applied Biochemistry and Biotechnology, 156(1–3), 107–124.

    Article  Google Scholar 

  24. Agler, M. T., Wrenn, B. A., Zinder, S. H., & Angenent, L. T. (2011). Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends in Biotechnology, 29(2), 70–78.

    Article  CAS  Google Scholar 

  25. Holtzapple, M., Lonkar, S., & Granda, C. (2015). Producing biofuels via the carboxylate platform. Chemical Engineering Progress, 111(3), 52–57.

    Google Scholar 

  26. Blackman, E. D., & van Walsum, G. P. (2009). Production of renewable fuels and bioproducts and reduction of phosphate pollution through the lime pretreatment and acidogenic digestion of dairy manure. Environmental Progress & Sustainable Energy, 28(1), 121–133.

    Article  CAS  Google Scholar 

  27. Ross, M. K., & Holtzapple, M. T. (2001). Laboratory method for high-solids countercurrent fermentations. Applied Biochemistry and Biotechnology, 94(2), 111–26.

    Article  CAS  Google Scholar 

  28. Kim, M., Gomec, C. Y., Ahn, Y., & Speece, R. E. (2003). Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environmental Technology, 24(9), 1183–1190.

    Article  CAS  Google Scholar 

  29. Fu, Z., & Holtzapple, M. T. (2010). Consolidated bioprocessing of sugarcane bagasse and chicken manure to ammonium carboxylates by a mixed culture of marine microorganisms. Bioresource technology, 101(8), 2825–36.

    Article  CAS  Google Scholar 

  30. Forrest, A. K., Hernandez, J., & Holtzapple, M. T. (2010). Effects of temperature and pretreatment conditions on mixed-acid fermentation of water hyacinths using a mixed culture of thermophilic microorganisms. Bioresource technology, 101, 7510–7515.

    Article  CAS  Google Scholar 

  31. Weimer, P. J., Nerdahl, M., & Brandl, D. J. (2015). Production of medium-chain volatile fatty acids by mixed ruminal microorganisms is enhanced by ethanol in co-culture with Clostridium kluyveri. Bioresource technology, 175, 97–101.

    Article  CAS  Google Scholar 

  32. Olson, D. G., McBride, J. E., Shaw, A. J., & Lynd, L. R. (2012). Recent progress in consolidated bioprocessing. Current Opinion in Biotechnology, 23(3), 396–405.

    Article  CAS  Google Scholar 

  33. Vasquez, S. T., Swades, J. D., Chaudhuri, K., Bond, A., & Holtzapple, M. T. (2014). Biomass conversion to hydrocarbon fuels using the MixAlco™ process at a pilot-plant scale. Biomass and Bioenergy, 62, 138–148.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation, EPSCoR Grant # 0554545 and by the Department of Energy contract # DE-FG36-08GO18165. We gratefully acknowledge Dr. Clay Wheeler for his assistance and mentorship, Drs. Byung-Hwan Um and Stephen Shaler for providing green liquor and hot water extracts for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Peter van Walsum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baddam, R., van Walsum, G.P. Acidogenic Digestion of Pre-pulping Extracts for Production of Fuels and Bioproducts Via Carboxylate Platform Processing. Appl Biochem Biotechnol 182, 1076–1094 (2017). https://doi.org/10.1007/s12010-016-2383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2383-2

Keywords

Navigation