Advertisement

Applied Biochemistry and Biotechnology

, Volume 182, Issue 2, pp 653–668 | Cite as

Metabolite Variation in Lean and Obese Streptozotocin (STZ)-Induced Diabetic Rats via 1H NMR-Based Metabolomics Approach

  • Azliana Abu Bakar Sajak
  • Ahmed Mediani
  • Maulidiani
  • Amin Ismail
  • Faridah AbasEmail author
Article

Abstract

Diabetes mellitus (DM) is considered as a complex metabolic disease because it affects the metabolism of glucose and other metabolites. Although many diabetes studies have been conducted in animal models throughout the years, the pathogenesis of this disease, especially between lean diabetes (ND + STZ) and obese diabetes (OB + STZ), is still not fully understood. In this study, the urine from ND + STZ, OB + STZ, lean/control (ND), and OB + STZ rats were collected and compared by using 1H NMR metabolomics. The results from multivariate data analysis (MVDA) showed that the diabetic groups (ND + STZ and OB + STZ) have similarities and dissimilarities for a certain level of metabolites. Differences between ND + STZ and OB + STZ were particularly noticeable in the synthesis of ketone bodies, branched-chain amino acid (BCAA), and sensitivity towards the oral T2DM diabetes drug metformin. This finding suggests that the ND + STZ group was more similar to the T1DM model and OB + STZ to the T2DM model. In addition, we also managed to identify several pathways and metabolism aspects shared by obese (OB) and OB + STZ. The results from this study are useful in developing drug target-based research as they can increase understanding regarding the cause and effect of DM.

Keywords

Metabolomics Diabetes Nuclear magnetic resonance Metabolic pathways 

Notes

Acknowledgement

This work was supported by the Research University Grant from Universiti Putra Malaysia (Grant No. 9362200). The first author acknowledges the support from the Ministry of Education Malaysia for a scholarship under the MyBrain Science Scheme.

Compliance with Ethical Standards

Approval for the animal study was obtained from the Institutional Animal Care and Use Committee (IACUC) of the Faculty Medicine and Health Sciences, Universiti Putra Malaysia (IACUC No. UPM/FPSK/PADS/BRUUH/00490).

Supplementary material

12010_2016_2352_MOESM1_ESM.docx (451 kb)
Figure S1 (DOCX 450 kb)
12010_2016_2352_MOESM2_ESM.docx (23 kb)
Figure S2 (DOCX 23 kb)
12010_2016_2352_MOESM3_ESM.docx (82 kb)
Figure S3 (DOCX 82 kb)
12010_2016_2352_MOESM4_ESM.docx (104 kb)
Figure S4 (DOCX 104 kb)
12010_2016_2352_MOESM5_ESM.docx (97 kb)
Figure S5 (DOCX 97 kb)
12010_2016_2352_MOESM6_ESM.docx (58 kb)
Figure S6 (DOCX 57 kb)
12010_2016_2352_MOESM7_ESM.docx (41 kb)
Figure S7 (DOCX 41 kb)
12010_2016_2352_MOESM8_ESM.docx (41 kb)
Figure S8 (DOCX 41 kb)
12010_2016_2352_MOESM9_ESM.docx (41 kb)
Figure S9 (DOCX 41 kb)
12010_2016_2352_MOESM10_ESM.docx (41 kb)
Figure S10 (DOCX 40 kb)
12010_2016_2352_MOESM11_ESM.docx (40 kb)
Figure S11 (DOCX 40 kb)
12010_2016_2352_MOESM12_ESM.docx (39 kb)
Figure S12 (DOCX 38 kb)
12010_2016_2352_MOESM13_ESM.docx (42 kb)
Figure S13 (DOCX 42 kb)
12010_2016_2352_MOESM14_ESM.docx (43 kb)
Figure S14 (DOCX 43 kb)
12010_2016_2352_MOESM15_ESM.docx (44 kb)
Figure S15 (DOCX 43 kb)
12010_2016_2352_MOESM16_ESM.docx (44 kb)
Figure S16 (DOCX 43 kb)
12010_2016_2352_MOESM17_ESM.docx (14 kb)
Table S1 (DOCX 14 kb)
12010_2016_2352_MOESM18_ESM.docx (13 kb)
Table S2 (DOCX 13 kb)
12010_2016_2352_MOESM19_ESM.docx (14 kb)
Table S3 (DOCX 13 kb)
12010_2016_2352_MOESM20_ESM.docx (14 kb)
Table S4 (DOCX 13 kb)
12010_2016_2352_MOESM21_ESM.docx (14 kb)
Table S5 (DOCX 14 kb)
12010_2016_2352_MOESM22_ESM.docx (13 kb)
Table S6 (DOCX 13 kb)
12010_2016_2352_MOESM23_ESM.docx (14 kb)
Table S7 (DOCX 13 kb)

References

  1. 1.
    World Health Organization (2015) Diabetes: the cost of diabetes. Available from: http://www.who.int/mediacentre/factsheets/fs312/en/. Accessed July 30.
  2. 2.
    World Health Organization (2002), Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus.Google Scholar
  3. 3.
    Diao, C., Zhao, L., Guan, M., Zheng, Y., Chen, M., Yang, Y., Lin, L., Chen, W., & Gao, H. (2014). Systemic and characteristic metabolites in the serum of streptozotocin-induced diabetic rats at different stages as revealed by a 1H-NMR based metabonomic approach. Molecular BioSystems, 10, 686–693.CrossRefGoogle Scholar
  4. 4.
    Rubin, A. L. (2012) Diabetes for dummies. 2ed. Wiley.Google Scholar
  5. 5.
    Sebedio, J. L., Pujos-Guillot, E., & Ferrara, M. (2009). Metabolomics in evaluation of glucose disorders. Current Opinion in Clinical Nutrition and Metabolic Care, 12, 412–418.CrossRefGoogle Scholar
  6. 6.
    Honardoost, M., reza Sarookhani, M., Arefian, E., & Soleimani, M. (2014). Insulin resistance associated genes and miRNAs. Applied Biochemistry and Biotechnology, 174, 63–80.CrossRefGoogle Scholar
  7. 7.
    Rees, D. A., & Alcolado, J. C. (2005). Animal models of diabetes mellitus. Diabetic Medicine: A Journal of the British Diabetic Association, 22, 359–370.CrossRefGoogle Scholar
  8. 8.
    Chatzigeorgiou, A., Halapas, A., Kalafatakis, K. and Kamper, E. (2009). The use of animal models in the study of diabetes mellitus. In vivo (Athens, Greece), 23, 245–258.Google Scholar
  9. 9.
    Srinivasan, K., & Ramarao, P. (2007). Animal models in type 2 diabetes research: an overview. The Indian Journal of Medical Research, 125, 451–472.Google Scholar
  10. 10.
    Kumar, R., Sharma, B., Tomar, N. R., Roy, P., Gupta, A. K., & Kumar, A. (2011). In vivo evaluation of hypoglycemic activity of Aloe spp. and identification of its mode of action on GLUT-4 gene expression in vitro. Applied Biochemistry and Biotechnology, 164, 1246–1256.CrossRefGoogle Scholar
  11. 11.
    Zhang, S., Nagana Gowda, G. A., Asiago, V., Shanaiah, N., Barbas, C., & Raftery, D. (2008). Correlative and quantitative 1H NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats. Analytical Biochemistry, 383, 76–84.CrossRefGoogle Scholar
  12. 12.
    Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L., & Ramarao, P. (2005). Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacological Research, 52, 313–320.CrossRefGoogle Scholar
  13. 13.
    Skovsø, S. (2014). Modeling type 2 diabetes in rats using high fat diet and streptozotocin. Journal of Diabetes Investigation.Google Scholar
  14. 14.
    Zhao, L. C., Zhang, X. D., Liao, S. X., Wang, H. Y., Lin, D. H., & Gao, H. C. (2010). A metabonomic comparison of urinary changes in Zucker and GK rats. Journal of Biomedicine and Biotechnology, 1–6.Google Scholar
  15. 15.
    Wishart, D., Knox, C., Guo, A., Eisner, R., Young, N., Gautam, B., Hau, D., Psychogios, N., Dong, E., Bouatra, S., Mandal, R., Sinelnikov, I., Xia, J., Jia, L., Cruz, J., Lim, E., Sobsey, C., Shrivastava, S., Huang, P., Liu, P., Fang, L., Peng, J., Fradette, R., Cheng, D., Tzur, D., Clements, M., Lewis, A., De Souza, A., Zuniga, A., Dawe, M., Xiong, Y., Clive, D., Greiner, R., Nazyrova, A., Shaykhutdinov, R., Li, L., Vogel, H., & Forsythe, I. (2009). HMDB: a knowledgebase for the human metabolome. Nucleic Acids Research, 37, 603–610.CrossRefGoogle Scholar
  16. 16.
    Eriksson, L., Johansson, E., Kettaneh-Wold, N., Wold, S., Trygg, J. and Wikstrom, C. (2006). Multi- and megavariate data analysis part I: basic principles and applications (2nd ed.) ed. Umetrics Academy (Appendix I), Sweden.Google Scholar
  17. 17.
    An, L., Shi, Q., & Feng, F. (2015). Metabolomics approach to identify therapeutically potential biomarkers of the Zhi-Zi-Da-Huang decoction effect on the hepatoprotective mechanism. RSC Advances, 5, 84048–84055.CrossRefGoogle Scholar
  18. 18.
    Song, X., Wang, J., Wang, P., Tian, N., Yang, M., & Kong, L. (2013). 1H NMR-based metabolomics approach to evaluate the effect of Xue-Fu-Zhu-Yu decoction on hyperlipidemia rats induced by high-fat diet. Journal of Pharmaceutical and Biomedical Analysis, 78-79, 202–210.CrossRefGoogle Scholar
  19. 19.
    Wheelock, A. M., & Wheelock, C. E. (2013). Trials and tribulations of ’omics data analysis: assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine. Molecular BioSystems, 9, 2589–2596.CrossRefGoogle Scholar
  20. 20.
    Quaile, M. P., Melich, D. H., Jordan, H. L., Nold, J. B., Chism, J. P., Polli, J. W., Smith, G. A., & Rhodes, M. C. (2010). Toxicity and toxicokinetics of metformin in rats. Toxicology and Applied Pharmacology, 243, 340–347.CrossRefGoogle Scholar
  21. 21.
    Inzucchi, S. E. (2002). Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA: The Journal of the American Medical Association, 287, 360–372.CrossRefGoogle Scholar
  22. 22.
    Wallymahmed, M. (2006). Insulin therapy in the management of type 1 and type 2 diabetes. Nursing standard (Royal College of Nursing (Great Britain): 1987), 21, 50–56; quiz 58.Google Scholar
  23. 23.
    Khazrai, Y. M., Defeudis, G., & Pozzilli, P. (2014). Effect of diet on type 2 diabetes mellitus: a review. Diabetes Metabolism Research and Reviews, 30(1), 24–33.CrossRefGoogle Scholar
  24. 24.
    Xia, J., Sinelnikov, I. V., Han, B. and Wishart, D. S. (2015). MetaboAnalyst 3.0 making metabolomics more meaningful. Nucleic Acids research, 43, 1–7.Google Scholar
  25. 25.
    Jiang, C. Y., Yang, K. M., Yang, L., Miao, Z. X., Wang, Y. H., & Zhu, H. B. (2013). A H NMR-based metabonomic investigation of time-related metabolic trajectories of the plasma, urine and liver extracts of hyperlipidemic hamsters. PloS One, 8, e66786.CrossRefGoogle Scholar
  26. 26.
    Xu, J., Liu, C., Cai, S., Dong, J., Li, X., Feng, J., & Chen, Z. (2013). Metabolomic profilings of urine and serum from high fat-fed rats via 1H NMR spectroscopy and pattern recognition. Applied Biochemistry and Biotechnology, 169, 1250–1261.CrossRefGoogle Scholar
  27. 27.
    Srinivasan, M., Choi, C. S., Ghoshal, P., Pliss, L., Pandya, J. D., Hill, D., Cline, G., & Patel, M. S. (2010). β-Cell-specific pyruvate dehydrogenase deficiency impairs glucose-stimulated insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 299, 910–917.CrossRefGoogle Scholar
  28. 28.
    Ainscow, E. K., Zhao, C., & Rutter, G. A. (2000). Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion. Diabetes, 49, 1149–1155.CrossRefGoogle Scholar
  29. 29.
    Zhao, L., Gao, H., Lian, F., Liu, X., Zhao, Y., & Lin, D. (2011). 1H-NMR-based metabonomic analysis of metabolic profiling in diabetic nephropathy rats induced by streptozotocin. American Journal of Physiology- Renal Physiology, 300, 947–956.CrossRefGoogle Scholar
  30. 30.
    Befroy, D. E., Petersen, K. F., Dufour, S., Mason, G. F., de Graaf, R. A., Rothman, D. L., & Shulman, G. I. (2007). Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes, 56, 1376–1381.CrossRefGoogle Scholar
  31. 31.
    Dedkova, E. N., & Blatter, L. A. (2014). Role of beta-hydroxybutyrate, its polymer poly-beta-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Frontiers in Physiology, 5, 260.CrossRefGoogle Scholar
  32. 32.
    Filla, L. A., Yuan, W., Feldman, E. L., Li, S., & Edwards, J. L. (2014). Global metabolomic and isobaric tagging capillary liquid chromatography–tandem mass spectrometry approaches for uncovering pathway dysfunction in diabetic mouse aorta. Journal of Proteome Research, 13, 6121–6134.CrossRefGoogle Scholar
  33. 33.
    Wurtz, P., Soininen, P., Kangas, A. J., Ronnemaa, T., Lehtimaki, T., Kahonen, M., Viikari, J. S., Raitakari, O. T., & Ala-Korpela, M. (2013). Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care, 36, 648–655.CrossRefGoogle Scholar
  34. 34.
    Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., Haqq, A. M., Shah, S. H., Arlotto, M., Slentz, C. A., Rochon, J., Gallup, D., Ilkayeva, O., Wenner, B. R., Yancy Jr., W. S., Eisenson, H., Musante, G., Surwit, R. S., Millington, D. S., Butler, M. D., & Svetkey, L. P. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9, 311–326.CrossRefGoogle Scholar
  35. 35.
    Tremblay, F., Krebs, M., Dombrowski, L., Brehm, A., Bernroider, E., Roth, E., Nowotny, P., Waldhausl, W., Marette, A., & Roden, M. (2005). Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes, 54, 2674–2684.CrossRefGoogle Scholar
  36. 36.
    Krebs, M., Brunmair, B., Brehm, A., Artwohl, M., Szendroedi, J., Nowotny, P., Roth, E., Furnsinn, C., Promintzer, M., Anderwald, C., Bischof, M., & Roden, M. (2007). The mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. Diabetes, 56, 1600–1607.CrossRefGoogle Scholar
  37. 37.
    Unluturk, U. and Erbas, T. (2015), in Tryptophan metabolism: implications for biological processes, health and disease: molecular and integrative toxicology (Engin, A. and Engin, A. B., eds.), Springer International Publishing, pp. 147–171.Google Scholar
  38. 38.
    Stone, T. W., & Darlington, L. G. (2007). Pharmacology of the kynurenine pathway. International Congress Series, 1304, 298–304.CrossRefGoogle Scholar
  39. 39.
    Pawlak, D., Pawlak, K., Malyszko, J., Mysliwiec, M., & Buczko, W. (2001). Accumulation of toxic products degradation of kynurenine in hemodialyzed patients. International Urology and Nephrology, 33, 399–404.CrossRefGoogle Scholar
  40. 40.
    Saito, K., Fujigaki, S., Heyes, M. P., Shibata, K., Takemura, M., Fujii, H., Wada, H., Noma, A., & Seishima, M. (2000). Mechanism of increases in l-kynurenine and quinolinic acid in renal insufficiency. American Journal of Physiology - Renal Physiology, 279, 565–572.Google Scholar
  41. 41.
    Won, E. Y., Yoon, M. K., Kim, S. W., Jung, Y., Bae, H. W., Lee, D., Park, S. G., Lee, C. H., Hwang, G. S., & Chi, S. W. (2013). Gender-specific metabolomic profiling of obesity in leptin-deficient ob/ob mice by 1H NMR spectroscopy. PloS One, 8, e75998.CrossRefGoogle Scholar
  42. 42.
    Lees, H. J., Swann, J. R., Wilson, I. D., Nicholson, J. K., & Holmes, E. (2013). Hippurate: the natural history of a mammalian-microbial cometabolite. Journal of Proteome Research, 12, 1527–1546.CrossRefGoogle Scholar
  43. 43.
    Kim, S. H., Yang, S. O., Kim, H. S., Kim, Y., Park, T., & Choi, H. K. (2009). 1H-nuclear magnetic resonance spectroscopy-based metabolic assessment in a rat model of obesity induced by a high-fat diet. Analytical and Bioanalytical Chemistry, 395, 1117–1124.CrossRefGoogle Scholar
  44. 44.
    Wyss, M., & Kaddurah-Daouk, R. (2000). Creatine and creatinine metabolism. Physiological Reviews, 80, 1107–1213.Google Scholar
  45. 45.
    Briggs, J. P., Levitt, M. F., & Abramson, R. G. (1977). Renal excretion of allantoin in rats: a micropuncture and clearance study. American Journal of Physiology - Renal Physiology, 233, 373–381.Google Scholar
  46. 46.
    Liu, G., Yang, G., Fang, T., Cai, Y., Wu, C., Wang, J., Huang, Z., & Chen, X. (2014). NMR-based metabolomic studies reveal changes in biochemical profile of urine and plasma from rats fed with sweet potato fiber or sweet potato residue. RSC Advances, 4, 23749–23758.CrossRefGoogle Scholar
  47. 47.
    Asatoor, A. M., & Simenhoff, M. L. (1965). The origin of urinary dimethylamine. Biochimica et Biophysica Acta, 111, 384–392.CrossRefGoogle Scholar
  48. 48.
    Raubenheimer, P. J., Nyirenda, M. J., & Walker, B. R. (2006). A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes, 55, 2015–2020.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratory of Natural Products, Institute of BioscienceUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Nutrition and Dietetics, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations