Skip to main content
Log in

Trypsin Slows the Aging of Mice due to Its Novel Superoxide Scavenging Activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Trypsin is an endogenous enzyme that is generally used as a proteinase. Intriguingly, we found that trypsin had superoxide scavenging activity. In the current study, our results showed that trypsin scavenges superoxide in either intracorporal or extracorporal systems. In the light of the porcupine plots of trypsin compounds generated by ProDy, the copper ion binds to trypsin and accelerates the superoxide scavenging activity of trypsin by increasing the stability of the structure. Furthermore, the data on the age-related parameters showed that the aging of mice could be slowed by trypsin, at least in part, due to its superoxide scavenging activity. These results suggested that trypsin is an effective superoxide scavenger and has potential as a novel agent to promote health and improve aging-associated pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AR/HRP:

Amplex Red/horseradish peroxidase

DDC:

Diethyldithiocarbamate

d-gal:

d-Galactose

DTPA:

Diethylenetriaminepentaacetic acid

ESR:

Electron spin resonance

LF:

Lipofuscin

MAO:

Monoamine oxidase

MDA:

Malondialdehyde

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

STI:

Soybean trypsin inhibitor

Tiron:

1,2-Dihydroxybenzene-3,5-disulfonic acid

References

  1. Barth, C., Moeder, W., Klessig, D. F., & Conklin, P. L. (2004). The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiology, 134, 1784–1792.

    Article  CAS  Google Scholar 

  2. Hoidal, J. R. (2001). Reactive oxygen species and cell signaling. American Journal of Respiratory Cell and Molecular Biology, 25(6), 661–663.

    Article  CAS  Google Scholar 

  3. Demidchik, V., Shabala, S. N., Coutts, K. B., Tester, M. A., & Davies, J. M. (2003). Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. Journal of Cell Science, 116, 81–88.

    Article  CAS  Google Scholar 

  4. Huycke, M. M., Joyce, W., & Wack, M. F. (1996). Augmented production of extracellular superoxide by blood isolates Enterococcus faecalis. The Journal of Infectious Diseases, 173(3), 743–746.

    Article  CAS  Google Scholar 

  5. Rosenzweig, E. S., & Barnes, C. A. (2003). Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Progress in Neurobiology, 69, 143–179.

    Article  CAS  Google Scholar 

  6. Faheem, U., Tahir, A., Najeeb, U., & Myeong, O. K. (2015). Caffeine prevents D-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain. Neurochemistry International, 90, 114–124.

    Article  Google Scholar 

  7. Haider, S., Liaquat, L., Shahzad, S., Sadir, S., Madiha, S., Batool, Z., Tabassum, S., Saleem, S., Naqvi, F., & Perveen, T. (2015). A high dose of short term exogenous d-galactose administration in young male rats produces symptoms simulating the natural aging process. Life Sciences, 124, 110–119.

    Article  CAS  Google Scholar 

  8. Li, W. J., Nie, S. P., Peng, X. P., Liu, X. Z., Li, C., Chen, Y., Li, J. E., Song, W. R., & Xie, M. Y. (2012). Ganoderma atrum polysaccharide improves age-related oxidative stress and immune impairment in mice. Journal of Agricultural and Food Chemistry, 60(6), 1413–1418.

    Article  CAS  Google Scholar 

  9. Lu, J., Zheng, Y. L., Wu, D. M., Luo, L., Sun, D. X., & Shan, Q. (2007). Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Biochemical Pharmacology, 74, 1078–1090.

    Article  CAS  Google Scholar 

  10. Katsuwon, J., & Anderson, A. J. (1990). Catalase and superoxide dismutase of root-colonizing saprophytic fluorescent pseudomonads. Applied and Environmental Microbiology, 56(11), 3576–3582.

    CAS  Google Scholar 

  11. Li, Q., Wei, Q., Yuan, E., Yang, J., & Ning, Z. (2014). Interaction between four flavonoids and trypsin: effect on the characteristics of trypsin and antioxidant activity of flavonoids. Int. J. Food Sci. Tech., 49, 1063–1069.

    Article  CAS  Google Scholar 

  12. Li, X., Pang, X. Y., Zhi, D. J., Wang, J. S., Li, M. Q., & Li, H. Y. (2009). Extracellular superoxide anion production contributes to virulence of Xanthomonas oryzae pv. oryzae. Canadian Journal of Microbiology, 55(2), 110–116.

    Article  CAS  Google Scholar 

  13. Husby, J., Todd, A. K., Haider, S. M., Zinzalla, G., Thurston, D. E., & Neidle, S. (2012). Molecular dynamics studies of the STAT3 homodimer: DNA complex: relationships between STAT3 mutations and protein-DNA recognition. Journal of Chemical Information and Modeling, 52(5), 1179–1192.

    Article  CAS  Google Scholar 

  14. Hsieh, H., Wu, W., & Hu, M. (2009). Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food and Chemical Toxicology, 47, 625–632.

    Article  CAS  Google Scholar 

  15. Catravas, G. N., Takenaga, J., & McHale, C. G. (1977). Effect of chronic administration of morphine on monoamine oxidase activity in discrete regions of the brain of rats. Biochemical Pharmacology, 26, 211–214.

    Article  CAS  Google Scholar 

  16. Mayanil, C. S., Kazmi, S. M., & Baquer, N. Z. (1982). Changes in monoamine oxidase activity in rat brain during alloxan diabetes. Journal of Neurochemistry, 38, 179–183.

    Article  CAS  Google Scholar 

  17. Choi, J. H., Kim, D. W., Yoo, D. Y., Jeong, H. J., Kim, W., Jung, H. Y., Nam, S. M., Kim, J. H., Yoon, Y. S., Choi, S. Y., & Hwang, I. K. (2013). Repeated administration of PEP -1 -Cu, Zn -superoxide dismutase and PEP -1 -peroxiredoxin -2 to senescent mice induced by D-galactose improves the hippocampal functions. Neurochemical Research, 38, 2046–2055.

    Article  CAS  Google Scholar 

  18. McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). The Journal of Biological Chemistry, 244, 6049–6055.

    CAS  Google Scholar 

  19. Li, X., Pang, X. Y., Tang, Z. C., Xiang, J. L., Liu, Y. H., & Qiao, J. J. (2016). Trypsin: a novel scavenger of superoxide anion. Res. J. Pharm. Pharm. Sci., 5(1), 1–5.

    Google Scholar 

  20. Kumar, P., Taha, A., Kale, R. K., Cowsik, S. M., & Baquer, N. Z. (2011). Physiological and biochemical effects of 17β estradiol in aging female rat brain. Experimental Gerontology, 46, 597–605.

    Article  CAS  Google Scholar 

  21. Kumar, P., Taha, A., Sharma, D., Kale, R. K., & Baquer, N. Z. (2008). Effect of dehydroepiandrosterone (DHEA) on monoamine oxidase activity, lipid peroxidation and lipofuscin accumulation in aging rat brain regions. Biogerontology, 9, 235–246.

    Article  CAS  Google Scholar 

  22. Gharibi, S., Tabatabaei, B. E. S., Saeidi, G., & Goli, S. A. H. (2016). Effect of drought stress on Total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Appl. Biochem. Biotech., 178(4), 796–809.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. James A. Imlay for providing strains of wild-type and sod knockout mutant for this work. Aging model of mice was established by Western Biotechnology of China. Determination of superoxide anion by ESR was accomplished with support from the Instrumental Analysis and Research Center, Lanzhou University. And we also thank the English editing by ACS ChemWorx (Certificate Verification Key: CBAE-B95E-C9A7-7B41-4C42).

Authors Contribution

X. Li, C.Y. Zhao, and Y.H. Liu conceived the projects. X. Li and X.Y. Pang designed and executed the experiments. Z.C. Tang, Y.H. Liu, and Z.C. Tang contributed expertise in aging of mice and Escherichia coli system. Z.C. Tang, C.Y. Zhao, and X.L. Li analyzed the data. All authors discussed the results. X. Li and C.Y. Zhao co-wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Ethics declarations

The experimental procedures were approved by the Animal Test Center of Henan Science and Technology University, license number SCXK (Yu) 2005-0001.

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding Sources

This work was supported by the National Natural Science Foundation of China (Nos. 31000017 and U1404334) and the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (KF2015-17).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Tang, Z., Pang, X. et al. Trypsin Slows the Aging of Mice due to Its Novel Superoxide Scavenging Activity. Appl Biochem Biotechnol 181, 1549–1560 (2017). https://doi.org/10.1007/s12010-016-2301-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2301-7

Keywords

Navigation