Skip to main content
Log in

Production, Purification and Characterisation of a Potential Fibrinolytic Protease from Endophytic Xylaria curta by Solid Substrate Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present investigation highlights the optimal conditions for production of a non-toxic, bi-functional fibrinolytic enzyme xylarinase produced by endophytic fungus Xylaria curta by solid substrate fermentation using rice chaff medium. The purified enzyme is a monomeric protein with a molecular mass of ∼33 kDa. The enzyme exhibits cleavage of Aα and Bβ chains of fibrin(ogen) and has no effect on γ chain. The optimal fibrinolytic activity of the enzyme was observed at 35 °C and pH 8. The fibrinolytic activity was enhanced in the presence of Ca2+, whereas it was completely inhibited in the presence of Fe2+ and Zn2+ ions and inhibitors like EDTA and EGTA suggesting it to be a metalloprotease. The K m and V max of the enzyme for azocasein were 326 μM and 0.13 μM min−1. The N-terminal sequence of the enzyme (SNGPLPGGVVWAG) was same when compared to xylarinase isolated from culture broth of X. curta. Thus, xylarinase could be exploited as a potent clot busting enzyme which could be produced on large scale using solid substrate fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Choi, B. S., Sapkota, K., Choi, J. H., Shin, C., Kim, S., & Kim, S. J. (2013). Herinase: a novel bi-functional fibrinolytic protease from the monkey head mushroom, Hericium erinaceum. Applied Biochemistry and Biotechnology, 170, 609–622.

    Article  CAS  Google Scholar 

  2. Bi, Q., Chu, J., Feng, Y., Jiang, Z., Han, B., & Liu, W. (2013). Purification and characterization of a new serine protease with fibrinolytic activity from the marine invertebrate, Urechis unicinctus. Applied Biochemistry and Biotechnology, 170, 525–540.

    Article  CAS  Google Scholar 

  3. Lee, S. Y., Kim, J. S., Kim, J. E., Sapkota, K., Shen, M. H., Kim, S., Chun, H. S., Yoo, J. C., Choi, H. S., Kim, M. K., & Kim, S. J. (2005). Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. Protein Express Purif, 43, 10–17.

    Article  CAS  Google Scholar 

  4. Choi, D. B., Cha, W. S., Park, N., Kim, H. W., Lee, J. H., Park, J. S., & Park, S. S. (2011). Purification and characterization of a novel fibrinolytic enzyme from fruiting bodies of Korean Cordyceps militaris. Bioresource Technology, 102, 3279–3285.

    Article  CAS  Google Scholar 

  5. Simkhada, J. R., Mander, P., Cho, S. S., & Yoo, J. C. (2010). A novel fibrinolytic protease from Streptomyces sp. CS684. Process Biochemistry, 45, 88–93.

    Article  CAS  Google Scholar 

  6. Kim, H. C., Choi, B. S., Sapkota, K., Kim, S., Lee, H. J., Yoo, J. C., & Kim, S. J. (2011). Purification and characterization of a novel, highly potent fibrinolytic enzyme from Paecilomyces tenuipes. Process Biochemistry, 46, 1545–1553.

    Article  CAS  Google Scholar 

  7. Mukherjee, A. K., Rai, S. K., Thakur, R., Pronobesh, C., & Kar, S. K. (2012). Bafibrinase: a non-toxic, non-hemorrhagic, direct-acting fibrinolytic serine protease from Bacillus sp. strain AS-S20-I exhibits in vivo anticoagulant activity and thrombolytic potency. Biochimie, 94, 1300–1308.

    Article  CAS  Google Scholar 

  8. Ju, X., Cao, X., Sun, Y., Wang, Z., Cao, C., Liu, J., & Jiang, J. (2012). Purification and characterization of a fibrinolytic enzyme from Streptomyces sp. XZNUM 00004. World J Microb Biot, 28, 2479–2486.

    Article  CAS  Google Scholar 

  9. Correa, R. C. G., Rhoden, S. A., Mota, T. R., Azevedo, J. L., Pamphile, J. A., De–Souza, C. G. M., Polizeli, M. D. L. T. D. M., Bracht, A., & Peralta, R. M. (2014). Endophytic fungi: expanding the arsenal of industrial enzyme producers. Journal of Industrial Microbiology & Biotechnology, 41, 1467–1478.

    Article  CAS  Google Scholar 

  10. Li, Y., Shuang, J. L., Yuan, W. W., Huang, W. Y., & Tan, R. X. (2007). Verticase: a fibinolytic enzyme produced by Verticilliumsp. Tj33, an endophyte of Trachelospermum jasminoides. Journal of Integrative Plant Biology, 49, 1548–1554.

    Article  CAS  Google Scholar 

  11. Ueda, M., Kubo, T., Miyatake, K., & Nakamura, T. (2007). Purification and characterization of fibrinolytic alkaline protease from Fusarium sp. BLB. Applied Microbiology and Biotechnology, 74, 331–338.

    Article  CAS  Google Scholar 

  12. Wu, B., Wu, L., Chen, D., Yang, Z., & Luo, M. (2009). Purification and characterization of a novel fibrinolytic protease from Fusarium sp. CPCC 480097. Journal of Industrial Microbiology & Biotechnology, 36, 451–459.

    Article  Google Scholar 

  13. Rovati, J. I., Delgado, O. D., Figueroa, L. I. C., & Farina, J. I. (2010). A novel source of fibrinolytic activity: Bionectria sp., an unconventional enzyme-producing fungus isolated from Las Yungas rainforest (Tucuman, Argentina). World J Microb Biot, 26, 55–62.

    Article  CAS  Google Scholar 

  14. Bhargav, S., Panda, B. P., Ali, M., & Javed, S. (2008). Solid-state fermentation: an overview. Chem Biochem Eng, 22, 49–70.

    CAS  Google Scholar 

  15. Singhaniaa, R. R., Patel, A. K., Soccolc, C. R., & Pandeya, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44, 13–18.

    Article  Google Scholar 

  16. Tao, S., Peng, L., Beihui, L., Deming, L., & Zuohu, L. (1997). Solid state fermentation of rice chaff for fibrinolytic enzyme production by Fusarium oxysporum. Biotechnology Letters, 19, 465–467.

    Article  CAS  Google Scholar 

  17. Gopinath, S. M., Suneetha, T. B., & Ashwini, P. G. M. (2011). Exploration of newer substrate for fibrinolytic enzyme production by solid state fermentation using Penicillium chrysogenum SGAD12. J Res Biol, 4, 242–245.

    Google Scholar 

  18. Hariharan, P., Naik, C. S., Vajpaye, P., & Srinivasa, K. (2014). Production, purification and characterization of thrombolytic enzyme from Cladosporium spp. through solid state fermentation. IJERT, 3, 585–589.

    Google Scholar 

  19. Vijayaraghavan, P., & Vincent, S. G. P. (2014). Statistical optimization of fibrinolytic enzyme production by Pseudoalteromonassp. IND11 using cow dung substrate by response surface methodology. Springer Plus, 3, 60.

    Article  Google Scholar 

  20. Astrup, T., & Mullertz, S. (1952). The fibrin plate method for estimating fibrinolytic activity. Arch Biochem Biophy, 40, 346–351.

    Article  CAS  Google Scholar 

  21. Vijayaraghavan, P., & Vincent, S. G. P. (2015). A low cost fermentation medium for potential fibrinolytic enzyme production by a newly isolated marine bacterium, Shewanella sp.IND20. Biotechnol Rep, 7, 135–142.

    Article  Google Scholar 

  22. Cui, L., Dong, M. S., Chen, X. H., Jiang, M., Lv, X., & Yan, G. (2008). A novel fibrinolytic enzyme from Cordyceps militaris, a Chinese traditional medicinal mushroom. World J Microb Biot, 24, 483–489.

    Article  CAS  Google Scholar 

  23. Cha, W. S., Park, S. S., Kim, S. J., & Choi, D. (2010). Biochemical and enzymatic properties of a fibrinolytic enzyme from Pleurotus eryngii cultivated under solid-state conditions using corn cob. Bioresource Technology, 101, 6475–6481.

    Article  CAS  Google Scholar 

  24. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  25. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  26. Babu, V., & Devi, C. S. (2015). In vitro thrombolytic activity of purified streptokinase extracted from Streptococcus equinus VIT_VB2 isolated from bovine milk. Journal of Thrombosis and Thrombolysis, 39, 71–78.

    Article  CAS  Google Scholar 

  27. Bi, Q., Han, B., Liu, W., Feng, Y., & Jiang, Z. (2013). UFEIII, a fibrinolytic protease from the marine invertebrate, Urechis unicinctus. Biotechnology Letters, 35, 1115–1120.

    Article  CAS  Google Scholar 

  28. Datta, G., Dong, A., Witt, J., & Tu, A. T. (1995). Biochemical characterization of basilase, a fibrinolytic enzyme from Crotalus basiliscus. Archives of Biochemistry and Biophysics, 317, 365–373.

    Article  CAS  Google Scholar 

  29. Wu, B., Wu, L., Ruan, L., Gei, M., & Chen, D. (2009). Screening of endophytic fungi with antithrombotic activity and identification of a bioactive metabolite from the endophytic fungal strain CPCC 480097. Current Microbiology, 58, 522–527.

    Article  CAS  Google Scholar 

  30. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  31. Choi, J. H., Sapkota, K., Kim, S., & Kim, S. J. (2014). Starase: a bi-functional fibrinolytic protease from hepatic caeca of Asterina pectinifera displays antithrombotic potential. Biochimie, 105, 45–57.

    Article  CAS  Google Scholar 

  32. Kim, J. S., Sapkota, K., Park, S. E., Choi, B. S., Kim, S., Hiep, N. T., Kim, C. S., Choi, H. S., Kim, M. K., Chun, H. S., Park, Y., & Kim, S. J. (2006). A fibrinolytic enzyme from the medicinal mushroom Cordyceps militaris. Journal of Microbiology, 44, 622–631.

    CAS  Google Scholar 

  33. Kim, J. H., & Kim, Y. S. (1999). A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom, Armillariella mellea. Bioscience, Biotechnology, and Biochemistry, 63, 2130–2136.

    Article  CAS  Google Scholar 

  34. Kang, S. R., Choi, J. H., Kim, D. W., Park, S. E., Sapkota, K., Kim, S., & Kim, S. J. (2016). A bifunctional protease from green alga Ulva pertusa with anticoagulant properties: partial purification and characterization. Journal of Applied Phycology, 28, 599–607.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Vineet Meshram is thankful to University Grants Commission, Govt. of India, New Delhi, for providing financial support via Rajiv Gandhi National Fellowship (F.16-1886(SC)/2010(SA-III). The authors are thankful to Department of Biotechnology (DBT), BT/PR/10083/NDB/52/95/2007, under which the endophytic culture was isolated. We express our gratitude to Dr. Girish Sahani, Director, IMTECH (Now DG CSIR), Mrs. Paramjit Kaur, Senior Technical Officer, Ms. Neha Rana and Ms. Navneet Kaur, Research Scholar, IMTECH, Chandigarh, India, for their kind cooperation in N-terminal sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjai Saxena.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshram, V., Saxena, S., Paul, K. et al. Production, Purification and Characterisation of a Potential Fibrinolytic Protease from Endophytic Xylaria curta by Solid Substrate Fermentation. Appl Biochem Biotechnol 181, 1496–1512 (2017). https://doi.org/10.1007/s12010-016-2298-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2298-y

Keywords

Navigation