Skip to main content

Advertisement

Log in

Development of Spectrophotometric Method for the Analysis of Multi-component Carbohydrate Mixture of Different Moieties

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Present study is a critical analysis and subsequent development of an analytical tool to measure the total sugar concentration in a carbohydrate mixture comprising both hexose and pentose. For this purpose, individual sugars were measured and standardized with anthrone reagent prepared in an ice-cold 98 % sulphuric acid followed by 3 min of boiling. Furthermore, regression analysis was performed after mathematical manipulation with the individual standards to formulate a linear relation between the absorbance of the mixture and its concentration, which satisfies Beer’s law. It was found that the correlation coefficient for the equation is 0.973, when confidence interval was set at 0.95. The validation was done with a synthetic mixture of concentrations at 0.17 and 0.22 g/L (as range was ensured between 0.1 and 0.3 g/L) and also with the carbohydrate mixture as the prehydrolyzate obtained after the pretreatment of banana stem, which showed around 94.1 % accuracy and higher sensitivity with the cellulose present in the mixture. Thus, the method is evident to quantify the total sugars accurately obtained from hydrolyzed lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim, J. H., Block, D. E., & Mills, D. A. (2010). Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Applied Microbiology and Biotechnology, 88, 1077–1085.

    Article  CAS  Google Scholar 

  2. Kumar, M., Saini, S., & Gayen, K. (2014). Elementary mode analysis reveals that Clostridium acetobutylicum modulates its metabolic strategy under external stress. Molecular BioSystems, 10, 2090–3004.

    Article  CAS  Google Scholar 

  3. Chi, C., Chang, H.-M., Li, Z., Jameel, H., & Zhang, Z. (2013). A method for rapid determination of sugars in lignocellulosic prehydrolyzate. BioResources, 8, 172–181.

    Google Scholar 

  4. Leoterio, D. M. S., Silva, P. A. B., Souza, G. C. S., Alves, A. D. A., Belian, M. F., & Galembeck, A. (2015). Copper-4,4′-dipyridyl coordination compound as solid reagent for spectrophotometric determination of reducing sugar employing a multicommutation approach. Food Control, 57, 225–231.

    Article  CAS  Google Scholar 

  5. Aimo, J., Promancio, E., & Damiani, P. C. (2016). Determination of reducing sugars in foodstuff applying multivariate second-order calibration. Analytical Methods, 8, 4617–4631.

    Article  CAS  Google Scholar 

  6. Dias, L. G., Veloso, A. C. A., Correia, D. M., Rocha, O., Torres, D., & Rocha, I. (2009). UV spectrophotometry method for the monitoring of galacto-oligosaccharides production. Food Chemistry, 113, 246–252.

    Article  CAS  Google Scholar 

  7. Baskan, K. S., Tutem, E., Akyuz, E., Ozen, S., & Apak, R. (2016). Spectrophotometric total reducing sugars assay based on cupric reduction. Talanta, 147, 162–168.

    Article  CAS  Google Scholar 

  8. Crofcheck, C. L., & Montross, M. D. (2006). Evaluation of fourier transform infrared spectroscopy measurements of glucose and xylose in biomass hydrolyzate. Applied Engineering in Agriculture, 22, 415–420.

    Article  Google Scholar 

  9. Ni, Y., Huang, C., & Kobot, S. (2003). A kinetic spectrophotometric method for the determination of ternary mixtures of reducing sugars with the aid of artificial neural networks and multivariate calibration. Analytica Chimica Acta, 480, 53–65.

    Article  CAS  Google Scholar 

  10. Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S.-I., & Lee, Y. C. (2005). Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Analytical Biochemistry, 339, 69–72.

    Article  CAS  Google Scholar 

  11. Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57, 508–514.

    Article  CAS  Google Scholar 

  12. Morse, E. E. (1947). Anthrone in estimating low concentrations of sucrose. Analytical Biochemistry, 19, 1012–1013.

    CAS  Google Scholar 

  13. Cui, S. and Brummer, Y. (2005) Understanding carbohydrate analysis. Food Carbohydrates. Informa UK Limited.

  14. Dreywood, R. (1946). Qualitative test for carbohydrate material. Industrial and Engineering Chemistry, Analytical Edition, 18, 499–499.

    Article  CAS  Google Scholar 

  15. Roe, J. H. (1955). The determination of sugar in blood and spinal fluid with anthrone reagent. Journal of Biological Chemistry, 212, 335–343.

    CAS  Google Scholar 

  16. Jermyn, M. A. (1975). Increasing the sensitivity of the anthrone method for carbohydrate. Analytical Biochemistry, 68, 332–335.

    Article  CAS  Google Scholar 

  17. Ludwig, T. G., & Goldberg, H. J. V. (1956). The anthrone method for the determination of carbohydrates in foods and in oral rinsing. Journal of Dental Research, 35, 90–94.

    Article  CAS  Google Scholar 

  18. Scott, R. W., Moore, W. E., Effland, M. J., & Millett, M. A. (1967). Ultraviolet spectrophotometric determination of hexoses, pentoses, and uronic acids after their reactions with concentrated sulfuric acid. Analytical Biochemistry, 21, 68–80.

    Article  CAS  Google Scholar 

  19. Zill, L. P. (1956). Anthrone reagent. Analytical Chemistry, 28, 1577–1580.

    Article  CAS  Google Scholar 

  20. Spiro, R. G. (1966). In Methods in enzymology, vol. 8 (pp. 3–26). Academic Press.

  21. Hansen, J., & Moller, I. (1975). Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Analytical Biochemistry, 68, 87–94.

    Article  CAS  Google Scholar 

  22. Binder, J. B., Cefali, A. V., Blank, J. J., & Raines, R. T. (2010). Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural. Energy & Environmental Science, 3, 765–771.

    Article  CAS  Google Scholar 

  23. De, S., Dutta, S., Patra, A. K., Rana, B. S., Sinha, A. K., Saha, B., & Bhaumik, A. (2012). Biopolymer templated porous TiO2: an efficient catalyst for the conversion of unutilized sugars derived from hemicellulose. Applied Catalysis A: General, 435, 197–203.

    Article  Google Scholar 

  24. Shi, Y., Yokoyama, T., Akiyama, T., Yashiro, M., & Matsumoto, Y. (2013). Characteristics of sulfurous acid prehydrolysis and its influence on the efficiency of subsequent chemical pulping process. BioResources, 8, 4837–4848.

    Google Scholar 

  25. Flannelly, T., Lopes, M., Kupiainen, L., Dooley, S., & Leahy, J. J. (2016). Non-stoichiometric formation of formic and levulinic acids from the hydrolysis of biomass derived hexose carbohydrates. RSC Advances, 6, 5797–5804.

    Article  CAS  Google Scholar 

  26. Bailey, R. W. (1958). The reaction of pentoses with anthrone. Biochemical Journal, 68, 669–672.

    Article  CAS  Google Scholar 

  27. Williams, D. L., & Dunlop, A. P. (1948). Kinetics of furfural destruction in acidic aqueous media. Industral and Engineering Chemistry, 40, 239–241.

    Article  CAS  Google Scholar 

  28. Hirayama, H., Hiraki, K., & Nishikawa, Y. (1971). Fluorometric determination of pentose with anthrone. Bunseki Kagaku, 20, 1435–1441.

    Article  CAS  Google Scholar 

  29. Robinson, J. W., Frame, E. M. S., & Frame II, G. M. (2005). Undergraduate instrumental analysis. Ed. New York: CRC Press.

    Google Scholar 

  30. Lue, A., Zhang, L., & Ruan, D. (2007). Inclusion complex formation of cellulose in NaOH–thiourea aqueous system at low temperature. Macromolecular Chemistry and Physics, 208, 2359–2366.

    Article  CAS  Google Scholar 

  31. Carcabal, P., Jockusch, R. A., Huinig, I., Snoek, L. C., Kroemer, R. T., Davis, B. G., Gamblin, D. P., Compagnon, I., Oomens, J., & Simons, J. P. (2005). Hydrogen bonding and cooperativity in isolated and hydrated sugars: mannose, galactose, glucose, and lactose. Journal of the American Chemical Society, 127, 11414–11425.

    Article  CAS  Google Scholar 

  32. Edelman, R., Kusner, I., Kisiliak, R., Srebnik, S., & Livney, Y. D. (2015). Sugar stereochemistry effects on water structure and on protein stability: the templating concept. Food Hydrocolloids, 48, 27–37.

    Article  CAS  Google Scholar 

  33. Jeffrey, G. A. and Saenger, W. (1991). Hydrogen bonding in biological structures. Springer Science + Business Media.

  34. Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16, 516–547.

    Article  CAS  Google Scholar 

  35. Lamminpaa, K., Ahola, J., & Tanskanen, J. (2014). Kinetics of furfural destruction in a formic acid medium. RSC Advances, 4, 60243–60248.

    Article  CAS  Google Scholar 

  36. Kim, T., Assary, R. S., Curtiss, L. A., Marshall, C. L., & Stair, P. C. (2011). Vibrational properties of levulinic acid and furan derivatives: Raman spectroscopy and theoretical calculations. Journal of Raman Spectroscopy, 42, 2069–2076.

    Article  CAS  Google Scholar 

  37. Pierson, Y., Bobbink, F., & Yan, N. (2013). Alcohol mediated liquefaction of lignocellulosic materials: a mini review. Chemical Engineering & Process Techniques, 1, 1014–1018.

    Google Scholar 

  38. Sun, Z., Cheng, M., Li, H., Shi, T., Yuan, M., Wang, X., & Jiang, Z. (2012). One-pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis. RSC Advances, 2, 9058–9065.

    Article  CAS  Google Scholar 

  39. Mandalika, A., Qin, L., Sato, T. K., & Runge, T. (2014). Integrated biorefinery model based on production of furans using open-ended high yield processes. Green Chemistry, 16, 2480–2489.

    Article  CAS  Google Scholar 

  40. Hemmings, C. A. (2008), In Haynes, C. V. and Huckell, B. B., (eds.) Geoarchaeology, vol. 23 (pp. 861–862). Tucson, Arizona: Wiley-Blackwell, University of Arizona Press.

  41. Prashanth, K. N., Basavaiah, K., & Xavier, C. M. (2014). Development and validation of UV-spectrophotometric methods for the determination of sumatriptan succinate in bulk and pharmaceutical dosage form and its degradation behavior under varied stress conditions. Journal of the Association of Arab Universities for Basic and Applied Sciences, 15, 43–52.

    Article  Google Scholar 

  42. Shrivastava, A., & Gupta, V. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2, 21–25.

    Article  Google Scholar 

  43. Behera, S., Ghanty, S., Ahmad, F., Santra, S., & Banerjee, S. (2012). UV-visible spectrophotometric method development and validation of assay of paracetamol tablet formulation. Journal of Analytical & Bioanalytical Techniques, 3, 151–156.

    Article  Google Scholar 

Download references

Acknowledgement

Ministry of Human Resources and Development (MHRD), India is acknowledged for funding this study through institute funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dwaipayan Sen or Kalyan Gayen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haldar, D., Sen, D. & Gayen, K. Development of Spectrophotometric Method for the Analysis of Multi-component Carbohydrate Mixture of Different Moieties. Appl Biochem Biotechnol 181, 1416–1434 (2017). https://doi.org/10.1007/s12010-016-2293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2293-3

Keywords

Navigation