Skip to main content
Log in

Efficient Preparation of (S)-N-Boc-3-Hydroxylpiperidine Through Bioreduction by a Thermostable Aldo-KetoReductase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

(S)-N-Boc-3-hydroxypiperidine ((S)-NBHP) is a key pharmaceutical intermediate and the chiral source in synthesizing Imbruvica, which is a newly approved drug in lymphoma therapy by targeting Bruton’s tyrosine kinase (BTK). Current chemical synthesis of (S)-NBHP suffered from the need of noble metal catalyst and low yield. The single reported bioconversion of (S)-NBHP was achieved by using recombinant ketoreductase, but enzyme sequence was kept confidential and the catalytic process suffered from the thermodeactivation and substrate inhibition. In the current study, we presented a thermostable aldo-keto reductase (AKR)—AKR-43—which showed high activity toward N-Boc-3-piperidone (NBP) to produce (S)-NBHP, high enantioselectivity, and no substrate inhibition. The molecular simulations demonstrated the structural rationale for the enantioselectivity of AKR-43 toward NBP and supported the classic ordered two-step catalytic mechanism. The catalytic process was achieved by using glucose dehydrogenase (GDH) for cofactor recycling, and the optimal reaction conditions were determined to be 30 °C and pH 7.5. Within a reaction time of 16 h, the 16 % substrate concentration (w/w), over 99 % ee and under 3.5 % of enzyme loading (w/w) characterized a high efficiency process with promising industrial values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wijdeven, M. A., Willemsen, J., & Rutjes, F. P. J. T. (2010). The 3-hydroxypiperidine skeleton: key element in natural product synthesis. European Journal of Organic Chemistry, 15, 2831–2844.

    Article  Google Scholar 

  2. Ju, X., Tang, Y. Y., Liang, X. L., Hou, M. Q., Wan, Z. H., & Tao, J. H. (2014). Development of a biocatalytic process to prepare (S)-N-boc-3-hydroxypiperidine. Organic Process Research & Development, 18, 827–830.

    Article  CAS  Google Scholar 

  3. Zechel, D. L., Boraston, A. B., Gloster, T., Boraston, C. M., Macdonald, J. M., Tilbrook, D. M. G., Stick, R. V., & Davies, G. J. (2003). Iminosugar glycosidase inhibitors: structural and thermodynamic dissection of the binding of isofagomine and 1-deoxynojirimycin to β-glucosidases. Journal of the American Chemical Society, 125, 14313–14323.

    Article  CAS  Google Scholar 

  4. Heightman, T. D., & Vasella, A. T. (1999). Recent insights into inhibition, structure, and mechanism of configuration-retaining glycosidases. Angewandte Chemie International Edition, 38, 750–770.

    Article  CAS  Google Scholar 

  5. Butters, T. D., Dwek, R. A., & Platt, F. M. (2000). Inhibition of glycosphingolipid biosynthesis: application to lysosomal storage disorders. Chemical Reviews, 100, 4683–4696.

    Article  CAS  Google Scholar 

  6. Chiou, W. H., Lin, G. H., & Liang, C. W. (2010). Facile syntheses of enantiopure 3-hydroxypiperidine derivatives and 3-hydroxypipecolic acids. Journal of Organic Chemistry, 75, 1748–1751.

    Article  CAS  Google Scholar 

  7. Aboul-Enein, H. Y., Serignese, V., Minguillon, C., & Oliveros, L. (1997). Enantioselective separation of several piperidine-2, 6-diones on a covalently bonded cellulose 3, 5-dimethylphenyl carbamate/10-undecenoate chiral selector. Biomedical Chromatography, 11, 303–306.

    Article  CAS  Google Scholar 

  8. Ali, I., Naim, L., Ghanem, A., & Aboul-Enein, H. Y. (2006). Chiral separations of piperidine-2, 6-dione analogues on Chiralpak IA and Chiralpak IB columns by using HPLC. Talanta, 69, 1013–1017.

    Article  CAS  Google Scholar 

  9. Ortiz, A., Young, I. S., Sawyer, J. R., Hsiao, Y., Singh, A., Sugiyama, M., Corbett, R. M., Chau, M., Shi, Z., & Conlon, D. A. (2012). Synthetic approaches to a chiral 4-amino-3-hydroxy piperidine with pharmaceutical relevance. Organic & Biomolecular Chemistry, 10, 5253–5257.

    Article  CAS  Google Scholar 

  10. Poerwono, H., Higashiyama, K., & Takahashi, H. (1998). Stereocontrolled syntheses of piperidine derivatives using diastereoselective reactions of chiral 1,3-oxazolidines with grignard reagents: asymmetric syntheses of the pinidine enantiomers. The Journal of Organic Chemistry, 63, 2711–2714.

    Article  CAS  Google Scholar 

  11. Willert, M., & Bols, M. (1998). A study of Baker’s yeast reduction of piperidone-carboxylates. Acta Chemica Scandinavica, 52, 461–468.

    Article  CAS  Google Scholar 

  12. Lacheretz, R., Pardo, D. G., & Cossy, J. (2009). Daucus carota mediated-reduction of cyclic 3-oxo-amines. Organic Letters, 11, 1245–1248.

    Article  CAS  Google Scholar 

  13. Liu, N., Hoogendoorn, S., van de Kar, B., Kaptein, A., Barf, T., Driessen, C., Filippov, D. V., van der Marel, G. A., van der Stelt, M., & Overkleeft, H. S. (2015). Direct and two-step bioorthogonal probes for Bruton’s tyrosine kinase based on ibrutinib: a comparative study. Organic & Biomolecular Chemistry, 13, 5147–5157.

    Article  CAS  Google Scholar 

  14. Amat, M., Llor, N., Huguet, M., Molins, E., Espinosa, E., & Bosch, J. (2001). Unprecedented oxidation of a phenylglycinol-derived 2-pyridone: enantioselective synthesis of polyhydroxypiperidines. Organic Letters, 3, 3257–3260.

    Article  CAS  Google Scholar 

  15. Hou, H., Li, R., Wang, X., Yuan, Z., Liu, X., Chen, Z., & Xu, X. (2015). Crystallographic analysis of a novel aldo-keto reductase from Thermotoga maritima in complex with NADP(+). Acta Crystallographica Section F-Structural Biology and Crystallization Communications, 71, 847–855.

    Article  CAS  Google Scholar 

  16. Wang, Z., Ling, B., Zhang, R., Suo, Y., Liu, Y., Yu, Z., & Liu, C. (2009). Docking and molecular dynamics studies toward the binding of new natural phenolic marine inhibitors and aldose reductase. Journal of Molecular Graphics and Modelling, 28, 162–169.

    Article  Google Scholar 

  17. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662.

    Article  CAS  Google Scholar 

  18. Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26, 1668–1688.

    Article  CAS  Google Scholar 

  19. Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Journal of Chemical Theory and Computation, 8, 1542–1555.

    Article  Google Scholar 

  20. Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of Chemical Theory and Computation, 9, 3878–3888.

    Article  CAS  Google Scholar 

  21. Ponder, J. W., & Case, D. A. (2003). Force fields for protein simulations. Advances in Protein Chemistry, 66, 27–86.

    Article  CAS  Google Scholar 

  22. Wang, Z., & Liu, J. P. (2015). Characterization of potassium binding with human telomeres. Clinical and Experimental Pharmacology and Physiology, 42, 902–909.

    Article  CAS  Google Scholar 

  23. Ma, Y.-H., Lv, D.-Q., Zhou, S., Lai, D.-Y., & Chen, Z.-M. (2013). Characterization of an aldo-keto reductase from Thermotoga maritima with high thermostability and a broad substrate spectrum. Biotechnology Letters, 35, 757–762.

    Article  CAS  Google Scholar 

  24. Kratzer, R., Wilson, D. K., & Nidetzky, B. (2006). Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies of Candida tenuis xylose reductase. IUBMB Life, 58, 499–507.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguo Wang or Zhenming Chen.

Additional information

Mengyan He and Shuo Zhou contributed equally to this work.

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Zhou, S., Cui, M. et al. Efficient Preparation of (S)-N-Boc-3-Hydroxylpiperidine Through Bioreduction by a Thermostable Aldo-KetoReductase. Appl Biochem Biotechnol 181, 1304–1313 (2017). https://doi.org/10.1007/s12010-016-2285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2285-3

Keywords

Navigation