Advertisement

Applied Biochemistry and Biotechnology

, Volume 181, Issue 3, pp 1179–1198 | Cite as

Transformation of Lettuce with rol ABC Genes: Extracts Show Enhanced Antioxidant, Analgesic, Anti-Inflammatory, Antidepressant, and Anticoagulant Activities in Rats

  • Hammad Ismail
  • Erum Dilshad
  • Mohammad Tahir Waheed
  • Bushra MirzaEmail author
Article

Abstract

Lettuce is an edible crop that is well known for dietary and antioxidant benefits. The present study was conducted to investigate the effects of rol ABC genes on antioxidant and medicinal potential of lettuce by Agrobacterium-mediated transformation. Transgene integration and expression was confirmed through PCR and real-time RT-PCR, respectively. The transformed plants showed 91–102 % increase in total phenolic contents and 53–65 % increase in total flavonoid contents compared to untransformed plants. Total antioxidant capacity and total reducing power increased up to 112 and 133 % in transformed plants, respectively. Results of DPPH assay showed maximum 51 % increase, and lipid peroxidation assay exhibited 20 % increase in antioxidant activity of transformed plants compared to controls. Different in vivo assays were carried out in rats. The transgenic plants showed up to 80 % inhibition in both hot plate analgesic assay and carrageenan-induced hind paw edema test, while untransformed plants showed only 45 % inhibition. Antidepressant and anticoagulant potential of transformed plants was also significantly enhanced compared to untransformed plants. Taken together, the present work highlights the use of rol genes to enhance the secondary metabolite production in lettuce and improve its analgesic, anti-inflammatory, antidepressant, and anticoagulatory properties.

Keywords

Lactuca sativa rol genes Analgesic Antidepressant Anti-inflammatory Antioxidants Anticoagulant 

Notes

Acknowledgments

HI acknowledges the Higher Education Commission (HEC), Islamabad, Pakistan, for provision of the scholarship during the study.

Authors’ Contributions

All authors contributed to the work. BM conceived the study design and supervised the study. MTW contributed in the study design and transformation. HI and ED conducted transformation and assays. All authors drafted the manuscript and approved the final version.

Compliance with Ethical Standards

The study design was approved by the Institutional Animal Ethics Committee, and all provisions were carried to minimize animal sufferings.

Competing Interests

The scholarship was provided to HI by the Higher Education Commission (HEC), Pakistan, to conduct the study. The funding body has no role in study design, collection, analysis, interpretation of data, and writing of the manuscript and in the decision to submit the manuscript for publication.

Supplementary material

12010_2016_2277_MOESM1_ESM.docx (42 kb)
ESM 1 (DOCX 42 kb)

References

  1. 1.
    Lucier, G., & Jerardo, A. (2005). Vegetables and melons situation and outlook yearbook. Electronic Outlook Report from the Economic Research Service USDA, 1–42.Google Scholar
  2. 2.
    Ismail, H., & Mirza, B. (2015). Evaluation of analgesic, anti-inflammatory, anti-depressant and anti-coagulant properties of Lactuca sativa (CV. Grand Rapids) plant tissues and cell suspension in rats. BMC Complementary and Alternative Medicine, 15(1), 199.CrossRefGoogle Scholar
  3. 3.
    Yakoot, M., Helmy, S., & Fawal, K. (2011). Pilot study of the efficacy and safety of lettuce seed oil in patients with sleep disorders. International Journal of General Medicine, 4, 451–456.CrossRefGoogle Scholar
  4. 4.
    Seeram, N. P., Aviram, M., Zhang, Y., Henning, S. M., Feng, L., Dreher, M., & Heber, D. (2008). Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. Journal of Agricultural and Food Chemistry, 56(4), 1415–1422.CrossRefGoogle Scholar
  5. 5.
    Harsha, S. N., & Anilakumar, K. R. (2013). Anxiolytic property of hydro-alcohol extract of Lactuca sativa and its effect on behavioral activities of mice. Journal of Biomedical Research, 27(1), 37–42.CrossRefGoogle Scholar
  6. 6.
    Jaiswal, J. V., Wadegaonkar, P. A., & Hajare, S. W. (2012). The bioflavonoid galangin suppresses the growth of Ehrlich ascites carcinoma in swiss albino mice: a molecular insight. Applied Biochemistry and Biotechnology, 167, 1325–1339.CrossRefGoogle Scholar
  7. 7.
    Caldwell, C. R. (2003). Alkylperoxyl radical scavenging activity of red leaf lettuce (Lactuca sativa L.) phenolics. Journal of Agricultural and Food Chemistry, 51, 4589–4595.CrossRefGoogle Scholar
  8. 8.
    Liu, X., Ardo, S., Bunning, M., Parry, J., Zhou, K., Stushnoff, C., et al. (2007). Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT-Food Science and Technology, 40, 552–557.CrossRefGoogle Scholar
  9. 9.
    DuPont, M. S., Mondin, Z., Williamson, G., & Price, K. R. (2000). Effect of variety, processing and storage on the flavonoid glycoside content and composition of lettuce endive. Journal of Agricultural and Food Chemistry, 48, 3957–3964.CrossRefGoogle Scholar
  10. 10.
    Ferreres, F., Gil, I., Castan, M., & Toma, F. A. (1997). Phenolic metabolites in red pigmented lettuce (Lactuca sativa). Changes with minimal processing and cold storage. Journal of Agricultural and Food Chemistry, 45(97), 4249–4254.CrossRefGoogle Scholar
  11. 11.
    Deng, X., Zhou, Y., & Chang, J. (2007). Establishment of genetic transformation system and transgenic studies in lettuce (Lactuca sativa var. capatata). Acta. Bot. Yunna, 29(1), 29(1), 98–102.Google Scholar
  12. 12.
    Song, L., Zhao, D., Wu, Y., & Li, Y. (2008). Transient expression of chicken alpha interferon gene in lettuce. Journal of Zhejiang University. Science. B, 9(5), 351–355.Google Scholar
  13. 13.
    Huy, N.-X., Yang, M.-S., & Kim, T.-G. (2011). Expression of a cholera toxin B subunit-neutralizing epitope of the porcine epidemic diarrhea virus fusion gene in transgenic lettuce (Lactuca sativa L.). Molecular Biotechnology, 48(3), 201–209.CrossRefGoogle Scholar
  14. 14.
    Meng, Z., Zhang, R., Liu, D., Yan, X., Geng, Q., & Guo, S. (2005). Expression of human lactoferrin, thymosin fusion gene in lettuce. National symposium abstract. Crop Biotechnol. Mutagen. Technol., 25.Google Scholar
  15. 15.
    Tian, X. (2007). A study of transformation of nattokinase into lettuce. M.D. Thesis Lanzhou University.Google Scholar
  16. 16.
    Li, X., Li, X., Zhang, J., Niu, J., Guo, R., Yang, H., & Liu, L. (2006). Expression and inheritance of lysine rich potein gene in lettuce (Lactuca sativa L.). Chinese Journal of Applied and Environmental Biology, 12(4), 472–475.Google Scholar
  17. 17.
    Kim, T.-G., Kim, M.-Y., Kim, B.-G., Kang, T.-J., Kim, Y.-S., Jang, Y.-S., et al. (2007). Synthesis and assembly of Escherichia coli heat-labile enterotoxin B subunit in transgenic lettuce (Lactuca sativa). Protein Expression and Purification, 51(1), 22–27.CrossRefGoogle Scholar
  18. 18.
    Wang, W., Guo, X., & Tang, K. (2011). Transformation of GDP-mannose pyrophosphorylase gene from Arabidopsis thaliana L. into Lactuca sativa L. Journal of Shanghai Jiaotong University (Agricultural Science), 29(2), 43–49.Google Scholar
  19. 19.
    Waheed, M. T., Ismail, H., Gottschamel, J., Mirza, B., & Lossl, A. G. (2015). Plastids: the green frontiers for vaccine production. Frontiers in Plant Science, 6, 1–11.CrossRefGoogle Scholar
  20. 20.
    Lossl, A. G., & Waheed, M. T. (2011). Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes. Plant Biotechnology Journal, 9, 527–539.CrossRefGoogle Scholar
  21. 21.
    Sobolev, A. P., Segre, A. L., Giannino, D., Mariotti, D., Nicolodi, C., Brosio, E., & Amato, M. E. (2007). Strong increase of foliar inulin occurs in transgenic lettuce plants (Lactuca sativa L.) overexpressing the asparagine synthetase A gene from Escherichia coli. Journal of Agricultural and Food Chemistry, 55(26), 10827–10831.CrossRefGoogle Scholar
  22. 22.
    Han, E., Lee, J., Lee, J., Chung, I., & Lee, Y. (2011). Transgenic lettuce expressing chalcone isomerase gene of chinese cabbage increased levels of flavonoids and polyphenols. Korean Journal of Horticultural Science & Technology, 29(August), 467–473.Google Scholar
  23. 23.
    Landi, M., Fambrini, M., Basile, A., Salvini, M., Guidi, L., & Pugliesi, C. (2015). Overexpression of L-galactono-1,4-lactone dehydrogenase (L-GalLDH) gene correlates with increased ascorbate concentration and reduced browning in leaves of Lactuca sativa L. after cutting. Plant Cell, Tissue and Organ Culture (PCTOC), 123(1), 109–120.CrossRefGoogle Scholar
  24. 24.
    Jimenez-Garcia, S. N., Torres-Pacheco, I., & Andres Cruz-Hernandez, A. F.-P. (2013). Current approaches for enhanced expression of secondary metabolites as bioactive compounds in plants for agronomic and human health purposes—a review. Polish Journal of Food and Nutrition Sciences, 63(2), 67–78.CrossRefGoogle Scholar
  25. 25.
    Bulgakov, V. P. (2008). Functions of rol genes in plant secondary metabolism. Biotechnology Advances, 26(4), 318–324.CrossRefGoogle Scholar
  26. 26.
    Dilshad, E., Zafar, S., Ismail, H., Waheed, M. T., Cusido, R. M., Palazon, J., & Mirza, B. (2016). Effect of rol genes on polyphenols biosynthesis in Artemisia annua and their effect on antioxidant and cytotoxic potential of the plant. Applied Biochemistry and Biotechnology, 1–13.Google Scholar
  27. 27.
    Ismail, H., Dilshad, E., Waheed, M. T., Sajid, M., Kayani, W. K., & Mirza, B. (2016). Transformation of Lactuca sativa L. with rol C gene results in increased antioxidant potential and enhanced analgesic, anti-inflammatory and antidepressant activities in vivo. 3 Biotech (Accepted).Google Scholar
  28. 28.
    Nijveldt, R. J., Van Nood, E., Van Hoorn, D. E. C., Boelens, P. G., Van Norren, K., & Van Leeuwen, P. A. M. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. American Journal of Clinical Nutrition, 74(4), 418–425.Google Scholar
  29. 29.
    Erlejman, A. G., Fraga, C. G., & Oteiza, P. I. (2006). Procyanidins protect CaCo-2 cells from bile acid- and oxidant-induced damage. Free Radical Biology and Medicine, 41, 1247–1256.CrossRefGoogle Scholar
  30. 30.
    Hodgson, J. M., & Croft, K. D. (2006). Revista de fitoterapia: Editorial. Journal of the Science of Food and Agriculture, 86, 2492–2498.CrossRefGoogle Scholar
  31. 31.
    Montefusco-Pereira, C. V., de Carvalho, M. J., de Araújo Boleti, A. P., Teixeira, L. S., Matos, H. R., & Lima, E. S. (2013). Antioxidant, anti-inflammatory, and hypoglycemic effects of the leaf extract from Passiflora nitida Kunth. Applied Biochemistry and Biotechnology, 170(6), 1367–1378.Google Scholar
  32. 32.
    Spena, A., Schmülling, T., Koncz, C., & Schell, J. S. (1987). Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. The EMBO Journal, 6(13), 3891–3899.Google Scholar
  33. 33.
    Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  34. 34.
    Torres, A. C., Cantliffe, D. J., Laughner, B., Bieniek, M., Nagata, R., Ashraf, M., & Ferl, R. J. (1993). Stable transformation of lettuce cultivar South Bay from cotyledon explants. Plant Cell, Tissue and Organ Culture, 34, 279–285.CrossRefGoogle Scholar
  35. 35.
    Clarke, J. D. (2009). Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harbor Protocols, 4(3), pdb.prot5177–pdb.prot5177.Google Scholar
  36. 36.
    Kiani, B. H., Safdar, N., Mannan, A., & Mirza, B. (2012). Comparative artemisinin analysis in Artemisia dubia transformed with two different Agrobacteria harbouring rol ABC genes. Plant Omics Journal, 5(4), 386–391.Google Scholar
  37. 37.
    Dilshad, E., Ismail, H., Kayani, W. K., & Mirza, B. (2016). Optimization of conditions for genetic transformation and in vitro propagation of Artemisia carvifolia Buch. Current Synthetic and Systems Biology, 4(1), 1–5.Google Scholar
  38. 38.
    Wroblewski, T., Piskurewicz, U., Tomczak, A., Ochoa, O., & Michelmore, R. W. (2007). Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities. Plant Journal, 51(5), 803–818.CrossRefGoogle Scholar
  39. 39.
    Moein, M. R., Moein, S., & Ahmadizadeh, S. (2008). Radical scavenging and reducing power of Salvia mirzayanii subfractions. Molecules, 13, 2804–2813.CrossRefGoogle Scholar
  40. 40.
    Phatak, R. S., & Hendre, A. S. (2014). Total antioxidant capacity (TAC) of fresh leaves of Kalanchoe pinnata. Journal of Pharmacognosy and Phytochemistry, 2(5), 32–35.Google Scholar
  41. 41.
    Gülen, H., Çetinkaya, C., Kadıoğlu, M., Kesici, M., Cansev, A., & Eriş, A. (2008). Peroxidase activity and lipid peroxidation in strawberry (Fragaria X ananassa) plants under low temperature. Journal of Biological & Environmental Science, 2(6), 95–100.Google Scholar
  42. 42.
    Ismail, H., Mirza, B., Haq, I., Shabbir, M., Akhter, Z., & Basharat, A. (2015). Synthesis, characterization, and pharmacological evaluation of selected aromatic amines. Journal of Chemistry, 2015, 1–9.CrossRefGoogle Scholar
  43. 43.
    Shabbir, M., Akhter, Z., Ahmad, I., Ahmed, S., Ismail, H., Mirza, B., et al. (2016). Synthesis, characterization, biological and electrochemical evaluation of novel ether based ON donor bidentate Schiff bases. Journal of Molecular Structure, 1116, 84–92.CrossRefGoogle Scholar
  44. 44.
    Eddy, N. B., & Leimbach, D. (1952). Synthetic analgesic. II. Dithienylbutenyl- and dithienylbutylamines. Journal of Pharmacology and Experimental Therapeutics, 107, 385–393.Google Scholar
  45. 45.
    Winter, C. A., Risley, E. A., & Nuss, G. W. (1962). Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Experimental Biology and Medicine, 111(3), 544–547.CrossRefGoogle Scholar
  46. 46.
    Slattery, D. A., & Cryan, J. F. (2012). Using the rat forced swim test to assess antidepressant-like activity in rodents. Nature Protocols, 7(6), 1009–1014.CrossRefGoogle Scholar
  47. 47.
    Hosoki, T., & Asahira, T. (1980). In vitro propagation of bromeliads in liquid culture. Horticulture Science, 15, 603–604.Google Scholar
  48. 48.
    Bustin, S. a. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 29(1), 23–39.CrossRefGoogle Scholar
  49. 49.
    Curtis, I. S., He, C., Power, J. B., Mariotti, D., Laat, A. D., & Davey, M. R. (1996). The effects of Agrobacterium rhizogenes rolAB genes in lettuce. Plant Science, 115, 123–135.CrossRefGoogle Scholar
  50. 50.
    Casanova, E., Trillas, M. I., Moysset, L., & Vainstein, A. (2005). Influence of rol genes in floriculture. Biotechnology Advances, 23, 3–39.CrossRefGoogle Scholar
  51. 51.
    Gharibi, S., Tabatabaei, B. E. S., Saeidi, G., & Goli, S. A. H. (2015). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Applied Biochemistry and Biotechnology, 178(4), 796–809.CrossRefGoogle Scholar
  52. 52.
    Sun, J., Chu, Y. F., Wu, X. Z., & Liu, R. H. (2002). Antioxidant and antiproliferative activities of vegetables. Journal of Agricultural and Food Chemistry, 50, 6910–6916.CrossRefGoogle Scholar
  53. 53.
    Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278.CrossRefGoogle Scholar
  54. 54.
    Namiesnik, J., Vearasilp, K., Nemirovski, A., Leontowicz, H., Leontowicz, M., Pasko, P., et al. (2014). In vitro studies on the relationship between the antioxidant activities of some berry extracts and their binding properties to serum albumin. Applied Biochemistry and Biotechnology, 172(6), 2849–2865.CrossRefGoogle Scholar
  55. 55.
    Barku, V. Y., Opoku-Boahen, Y., Owusu-Ansah, E., & Mensah, E. F. (2013). Antioxidant activity and the estimation of total phenolic and flavonoid contents of the root extract of Amaranthus spinosus. Asian Journal of Plant Science and Research, 3(1), 69–74.Google Scholar
  56. 56.
    Jha, D. K., Panda, L., Ramaiah, S., & Anbarasu, A. (2014). Evaluation and comparison of radical scavenging properties of solvent extracts from Justicia adhatoda leaf using DPPH assay. Applied Biochemistry and Biotechnology, 174(7), 2413–2425.CrossRefGoogle Scholar
  57. 57.
    Vinson, J. a., Su, X., Zubik, L., & Bose, P. (2001). Phenol antioxidant quantity and quality in foods: fruits. Journal of Agricultural and Food Chemistry, 49(11), 5315–5321.CrossRefGoogle Scholar
  58. 58.
    Shabbir, M., Akhter, Z., Ahmad, I., Ahmed, S., Ismail, H., Mirza, B., et al. (2015). Synthesis, biological and electrochemical evaluation of novel nitroaromatics as potential anticancerous drugs. Bioelectrochemistry, 104, 85–92.CrossRefGoogle Scholar
  59. 59.
    Jun, T., Liancai, Z., & Bochu, W. (2007). Effects of quercetin on DNA damage induced by copper ion. International Journal of Pharmacology, 3(1), 19–26.CrossRefGoogle Scholar
  60. 60.
    Vongtau, H. O., Abbah, J., Mosugu, O., Chindo, B. a., Ngazal, I. E., Salawu, a. O., & Gamaniel, K. S. (2004). Antinociceptive profile of the methanolic extract of Neorautanenia mitis root in rats and mice. Journal of Ethnopharmacology, 92, 317–324.CrossRefGoogle Scholar
  61. 61.
    Richardson, J. D., Aanonsen, L., & Hargreaves, K. M. (1998). Antihyperalgesic effects of spinal cannabinoids. European Journal of Pharmacology, 345, 145–153.CrossRefGoogle Scholar
  62. 62.
    Suh, N., Honda, T., Finlay, H. J., Barchowsky, A., Williams, C., Benoit, N. E., et al. (1998). Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Cancer Research, 58, 717–723.Google Scholar
  63. 63.
    Astuti, K. W., Putu, L., & Larasanty, F. (2013). Combined effects of noni fruit extract (Morinda citrifolia L.) and warfarin on bleeding and coagulation time of mice. International Journal of Pharmacy Teaching & Practices, 4(4), 863–866.Google Scholar
  64. 64.
    Raaof, A., Al-naqqash, Z. A., Jawad, A. M., & Muhsan, S. M. (2013). Evaluation of the activity of crude alkaloids extracts of Zingiber officinale roscoe., Thymus vulgaris L. and Acacia arabica L. as coagulant agent in lab mice. Biomedicine and Biotechnology, 1(2), 11–16.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hammad Ismail
    • 1
  • Erum Dilshad
    • 2
  • Mohammad Tahir Waheed
    • 3
  • Bushra Mirza
    • 3
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of GujratGujratPakistan
  2. 2.Department of Bioinformatics and BiosciencesCapital University of Science and TechnologyIslamabadPakistan
  3. 3.Department of BiochemistryQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations