Skip to main content

Advertisement

Log in

Synthesis and Characterization of Sygyzium cumini Nanoparticles for Its Protective Potential in High Glucose-Induced Cardiac Stress: a Green Approach

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

There exists a complex and multifactorial relationship between diabetes and cardiovascular disease. Hyperglycemia is an important factor imposing damage (glucose toxicity) on cardiac cell leading to diabetic cardiomyopathy. There are substantial clinical evidences on the adverse effects of conventional therapies in the prevention/treatment of diabetic cardiovascular complications. Currently, green-synthesized nanoparticles have emerged as a safe, efficient, and inexpensive alternative for therapeutic uses. The present study discloses the silver nanoparticle biosynthesizing capability and cardioprotective potential of Syzygium cumini seeds already reported to have antidiabetic properties. Newly generated silver nanoparticles S. cumini MSE silver nanoparticles (SmSNPs) were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), zeta sizer, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Using methanolic extract of S. cumini seeds, an average size of 40–100-nm nanoparticles with 43.02 nm and −19.6 mV zeta potential were synthesized. The crystalline nature of SmSNPs was identified by using XRD. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assays revealed the antioxidative potential to be 66.87 (±0.7) % and 86.07 (±0.92) % compared to 60.29 (±0.02) % and 85.67 (±1.27) % for S. cumini MSE. In vitro study on glucose-stressed H9C2 cardiac cells showed restoration in cell size, nuclear morphology, and lipid peroxide formation upon treatment of SmSNPs. Our findings concluded that S. cumini MSE SmSNPs significantly suppress the glucose-induced cardiac stress in vitro by maintaining the cellular integrity and reducing the oxidative damages therefore establishing its therapeutic potential in diabetic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Harvey, A. (2008). Natural products in drug discovery. Drug Discovery Today, 13, 894–901.

    Article  CAS  Google Scholar 

  2. Veeresham, C. (2012). Natural products derived from plants as a source of drugs. J. Adv. Pharm Tech Res, 3, 200.

    Article  Google Scholar 

  3. Cragg, G., & Newman, D. (2013). Natural products: a continuing source of novel drug leads. Biochim et Biophys Acta, 1830, 3670–3695.

    Article  CAS  Google Scholar 

  4. Lahlou, M. (2013). The success of natural products in drug discovery. Pharmacol. Pharm, 4, 17–31.

    Article  Google Scholar 

  5. Mishra, B., & Tiwari, V. (2011). Natural products: an evolving role in future drug discovery. Euro J Med Chem, 46, 4769–4807.

    Article  CAS  Google Scholar 

  6. Jong, de. (2008) Drug delivery and nanoparticles: applications and hazards, Inter J Nanomed 133.

  7. Binita, K., Kumar, S., Shrama, V. K., Sharma, V., & Yadav, S. (2014). Proteomic identification of Syzygium cumini seed extracts by Maldi-TOF/MS. Applied Biochemistry and Biotechnology, 172, 2091–2105.

    Article  CAS  Google Scholar 

  8. Fazal, H. Abbasi, B.H. Ahmad, N. and Ali, M. (2016) Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl Biochem Biotechnol.

  9. Mudshinge, S., Deore, A., Patil, S., & Bhalgat, C. (2011). Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J, 19, 129–141.

    Article  CAS  Google Scholar 

  10. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13, 2638.

    Article  CAS  Google Scholar 

  11. Alkaladi, A., Abdelazim, A., & Afifi, M. (2014). Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. International Journal of Molecular Sciences, 15, 2015–2023.

    Article  Google Scholar 

  12. Vyshnava, S.S. Kanderi, D.K. Panjala, S.P. Pandian, K. Bontha, R.R. Goukanapalle, P.K. and Banaganapalli, B. (2016) Effect of silver nanoparticles against the formation of biofilm by Pseudomonas aeruginosa an in silico approach. Appl Biochem Biotechnol.

  13. Raveendran, P., Fu, J., & Wallen, S. (2003). Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 125, 13940–13941.

    Article  CAS  Google Scholar 

  14. Koehn, F., & Carter, G. (2005). The evolving role of natural products in drug discovery. Nature Rev Drug Discov, 4, 206–220.

    Article  CAS  Google Scholar 

  15. Atale, N., & Rani, V. (2016). Syzygium cumini: an effective cardioprotective via its antioxidation potential. Int J Pharm Sci Rev Res, 37, 42–51.

    CAS  Google Scholar 

  16. Atale, N., & Rani, V. (2013). GC-MS analysis of bioactive components in the ethanolic and methanolic extract of Syzygiumcumini. International Journal of Pharma and Bio Sciences, 4, 296–304.

    CAS  Google Scholar 

  17. Atale, N., Jaiswal, A., Chhabra, A., Malhotra, U., Kohli, S., & Mohanty, S. (2011). Phytochemical and antioxidant screening of Syzygium cumini seed extracts: a comparative study. Journal of Pharmacy Research, 4, 4530.

    Google Scholar 

  18. Atale, N., Chakraborty, M., Mohanty, S., Bhattacharya, S., Nigam, D., & Sharma, M. (2013). Cardioprotectiverole of Syzygium cumini against glucose-induced oxidative stress in H9C2 cardiac myocytes. Cardiovascular Toxicology, 13, 278–289.

    Article  CAS  Google Scholar 

  19. Atale, N., Gupta, K., & Rani, V. (2014). Protective effect of Syzygium cumini against pesticide-induced cardiotoxicity. Environmental Science and Pollution Research, 21, 7956–7972.

    Article  CAS  Google Scholar 

  20. Borase, P. H., Salunke, B. S., Salunke, R. B., Patil, C. D., Hallsworth, J. E., Kim, B. S., & Patil, S. V. (2014). Plant extract : a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Appl Biochem Biotech, 1, 1–29.

    Article  Google Scholar 

  21. Ramezani, F., Jebali, A., & Kazemi, B. (2012). A green approach for synthesis of gold and silver nanoparticles by Leishmania sp. Appl Biochem Biotech, 168, 1549–1555.

    Article  CAS  Google Scholar 

  22. Kumar, V., Yadav, S., & Yadav, S. (2010). Syzygium cumini Leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. Journal of Chemical Technology and Biotechnology, 85, 1301–1309.

    Article  CAS  Google Scholar 

  23. Sun, J., Tsuang, Y., Chen, I., Huang, W., Hang, Y., & Lu, F. (1998). An ultra-weak chemiluminescence study on oxidative stress in rabbits following acute thermal injury. Burns, 24, 225–231.

    Article  CAS  Google Scholar 

  24. Brand-Williams, W., Cuvelier, M., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol, 28, 25–30.

    Article  CAS  Google Scholar 

  25. Aschar-Sobbi, R., Abramov, A., Diao, C., Kargacin, M., Kargacin, G., & French, R. (2008). High sensitivity, quantitative measurements of polyphosphate using a new dapi-based approach. Journal of Fluorescence, 18, 859–866.

    Article  CAS  Google Scholar 

  26. Brana, C., Benham, C., & Sundstrom, L. (2002). A method for characterizing cell death in vitro by combining propidium iodide staining with immunohistochemistry. Brain Research Protocols, 10, 109–114.

    Article  CAS  Google Scholar 

  27. Gharibi, S., Tabatabaei, B. E., Saeidi, G., & Goli, S. A. (2016). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea Species. Applied Biochemistry and Biotechnology, 178(4), 796–809.

    Article  CAS  Google Scholar 

  28. Ahire, M., Pardesi, K., Bellare, J., Dhavale, D. D., Jabgunde, A., & Balu, A. (2012). Synthesis of silver nanoparticles using Dioscoreabulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International Journal of Nanomedicine, 7, 483–496.

    Google Scholar 

  29. Bhadra, M. P., Sreedhar, B., & Patra, C. R. (2014). Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics, 4, 316–335.

    Article  Google Scholar 

  30. Nabikhan, A., Kandasamy, K., Raj, A., & Alikunhi, N. M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant. Sesuviumportula Castrum L. Colloids and Surfaces B: Biointerfaces, 79, 488–493.

    Article  CAS  Google Scholar 

  31. Ghoreishi, S. M., Behpour, M., & Khayatkashani, M. (2011). Green synthesis of silver and gold nanoparticles using Rosa Damascena and its primary application in electrochemistry. Physica E: Low-dimensional Systems and Nanostructures, 44, 97–104.

    Article  CAS  Google Scholar 

  32. Philip, D. (2010). Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis. Physica E: Low-dimensional Systems and Nanostructures, 42, 1417–1424.

    Article  CAS  Google Scholar 

  33. Smitha, S. L., Philip, D., & Gopchandran, K. G. (2009). Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 74, 735–739.

    Article  CAS  Google Scholar 

  34. Kapuściński, J., & Skoczylas, B. (1978). Fluorescent complexes of DNA with DAPI 4′, 6-diamidine-2-phenyl indole 2HCl or DCI 4′, 6-dicarboxyamide-2-pnenyl indole. Nucleic Acids Research, 5, 3775–3800.

    Article  Google Scholar 

  35. Roy, N., Gaur, A., Jain, A., Bhattacharya, S., & Rani, V. (2013). Green synthesis of silver nanoparticles: an approach to overcome toxicity. Environmental Toxicology and Pharmacology, 36(3), 807–812.

    Article  CAS  Google Scholar 

  36. Ceriello, A., Testa, R., & Genovese, S. (2016). Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutrition, Metabolism, and Cardiovascular Diseases, 26(4), 285–292.

    Article  CAS  Google Scholar 

  37. Petit, J. M., Maftah, A., Ratinaud, M. H., & Julien, R. (1992). 10N-Nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. European Journal of Biochemistry, 209, 267–273.

    Article  CAS  Google Scholar 

  38. Jain, A., Atale, N., Kohli, S., Bhattacharya, S., Sharma, M., & Rani, V. (2015). An assessment of norepinephrine mediated hypertrophy to apoptosis transition in cardiac cells: a signal for cell death. Chemico-Biological Interactions, 225, 54–62.

    Article  CAS  Google Scholar 

  39. Rani, V., Deep, G., Singh, R. K., Palle, K., & Yadav, U. C. (2016). Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sciences, 148, 183–193.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Jaypee Institute of Information Technology, Deemed to be University for providing the infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Rani.

Ethics declarations

Conflict of Interest

The authors have declared that no competing interests exist.

Electronic supplementary material

ESM 1

(TIFF 794 kb)

ESM 2

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atale, N., Saxena, S., Nirmala, J.G. et al. Synthesis and Characterization of Sygyzium cumini Nanoparticles for Its Protective Potential in High Glucose-Induced Cardiac Stress: a Green Approach. Appl Biochem Biotechnol 181, 1140–1154 (2017). https://doi.org/10.1007/s12010-016-2274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2274-6

Keywords