Skip to main content
Log in

Recovery of Phenolic Acid and Enzyme Production from Corn Silage Biologically Treated by Trametes versicolor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corn silage is used as high-energy forage for dairy cows and more recently for biogas production in a process of anaerobic co-digestion with cow manure. In this work, fresh corn silage after the harvest was used as a substrate in solid-state fermentations with T. versicolor with the aim of phenolic acid recovery and enzyme (laccase and manganese peroxidase) production. During 20 days of fermentation, 10.4-, 3.4-, 3.0-, and 1.8-fold increments in extraction yield of syringic acid, vanillic acid, p-hydroxybenzoic acid, and caffeic acid, respectively, were reached when compared to biologically untreated corn silage. Maximal laccase activity was gained on the 4th day of fermentation (V.A. = 180.2 U/dm3), and manganese peroxidase activity was obtained after the 3rd day of fermentation (V.A. = 30.1 U/dm3). The addition of copper(II) sulfate as inducer during solid state fermentation resulted in 8.5- and 7-fold enhancement of laccase and manganese peroxidase activities, respectively. Furthermore, the influence of pH and temperature on enzyme activities was investigated. Maximal activity of laccase was obtained at T = 50 °C and pH = 3.0, while manganese peroxidase is active at temperature range T = 45–70 °C with the maximal activity at pH = 4.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Canam, T., Town, J. R., Tsang, A., McAllister, T. A., & Dumonceaux, T. J. (2011). Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw. Bioresource Technology, 102, 10020–10027.

    Article  CAS  Google Scholar 

  2. Salvachúa, D., Prieto, A., López-Albelairas, M., Lu-Chau, T., & Martínes, Á. T. (2011). Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresource Technology, 102, 7500–7506.

    Article  Google Scholar 

  3. Zhao, J., Ge Xm Vasco-Correa, J., & Li, Y. (2014). Fungal pretreatment of unsterilized yard trimmings for enhanced methane production by solid-state anaerobic digestion. Bioresource Technology, 158, 248–252.

    Article  CAS  Google Scholar 

  4. Zhong, W., Zhang, Z., Luo, Y., Sun, S., Qiao, W., & Xiao, M. (2011). Effect of biological pretreatment in enhancing corn straw biogas production. Bioresource Technology, 102, 11177–11182.

    Article  CAS  Google Scholar 

  5. Rodrígues Couto, S., Moldes, D., Liébanas, A., & Sanromán, A. (2003). Investigation of several bioreactor configuration for laccase production by Trametes versicolor operating in solid-state conditions. Biochemical Engineering Journal, 15, 21–26.

    Article  Google Scholar 

  6. Rani Singhania, R., Kumar Patel, A., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44, 13–18.

    Article  Google Scholar 

  7. Lynch, J. P., O’Kiely, P., Murphjy, R., & Doyle, E. M. (2014). Changes in chemical composition and digestibility of three maize stover components digested by white-rot fungi. Journal of Animal Physiology and Animal Nutrition, 98, 731–738.

    Article  CAS  Google Scholar 

  8. Pérez, J., Muñoz-Dorado, J., de la Rubia, T., & Martínez, J. (2002). Biodegradation and biological treatment of cellulose, hemicellulose and lignin: an overview. International Microbiology, 5, 53–63.

    Article  Google Scholar 

  9. Mussatto, S. I., Dragone, G., & Roberto, I. C. (2007). Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer’s spent grain. Industrial Crops and Products, 25, 231–237.

    Article  CAS  Google Scholar 

  10. Torre, P., Aliakbarian, B., Rivas, B., Domínguez, J. M., & Converti, A. (2008). Release of ferulic acid from corn cobs by alkaline hydrolysis. Biochemical Engineering Journal, 40, 500–506.

    Article  CAS  Google Scholar 

  11. Hu, Q. P., & Xu, J. G. (2011). Profiles of carotenoids, anthocyanins, phenolics, and antioxidant activity of selected colour waxy corn grain during maturation. Journal of the Science of Food and Agriculture, 59, 2026–2033.

    Article  CAS  Google Scholar 

  12. Martins, S., Mussatto, S. I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, C. N., & Teixeira, J. A. (2011). Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review. Biotechnology Advances, 29, 365–373.

    Article  CAS  Google Scholar 

  13. Robbins, J. R. (2003). Phenolic acids in foods: an overview of analytical methodology. Journal of Agricultural and Food Chemistry, 51, 2866–2887.

    Article  CAS  Google Scholar 

  14. Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agro-industrial by-products: antioxidant activity, occurrence and potential uses. Food Chemistry, 99, 191–203.

    Article  CAS  Google Scholar 

  15. Xia, E. Q., Deng, G. F., Guo, Y. J., & Li, H. B. (2010). Biological activities of polyphenols from grapes. International Journal of Molecular Sciences, 11, 622–646.

    Article  CAS  Google Scholar 

  16. Hooper, L., & Cassidy, A. (2006). A review of the health care potential of bioactive compounds. Journal of the Science of Food and Agriculture, 86, 1805–1813.

    Article  CAS  Google Scholar 

  17. Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism and nutritional significance. Nutrition Reviews, 56, 317–333.

    Article  CAS  Google Scholar 

  18. Bucić-Kojić, A., Sovová, H., Planinić, M., & Tomas, S. (2013). Temperature-dependent kinetics of grape seed phenolic compounds extraction: experiment and model. Food Chemistry, 136, 1136–1140.

    Article  Google Scholar 

  19. Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., & Valéro, J. R. (2011). Solid-state fermentation of apple pomace using Phanerocheate chrysosporium—liberation and extraction of phenolic antioxidant. Food Chemistry, 126, 1071–1080.

    Article  CAS  Google Scholar 

  20. Couto, S. R., & Sanromàn, M. A. (2006). Application of solid-state fermentation to food industry—a review. Journal of Food Engineering, 76, 291–302.

    Article  CAS  Google Scholar 

  21. Díaz, A. B., Caro, I., Ory, I., & Blandino, A. (2007). Evaluation of the conditions for the extraction of hydrolitic enzymes obtained by solid state fermentation from grape pomace. Enzyme and Microbial Technology, 41, 302–306.

    Article  Google Scholar 

  22. Pandey, A., Soccol, C. R., & Mitchell, D. (2000). New developments in solid state fermentation: I-bioprocesses and products. Process Biochemistry, 35, 1153–1169.

    Article  CAS  Google Scholar 

  23. Madeira Junior, J. V., Teixeira, C. B., & Macedo, G. A. (2013). Biotransformation and bioconversion of phenolic compounds obtainment: an overview. Critical Reviews in Biotechnology, 35, 75–81.

    Article  Google Scholar 

  24. Aydınoğlu, T., & Sargın, S. (2013). Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate. Bioprocess and Biosystems Engineering, 36, 215–222.

    Article  Google Scholar 

  25. Rodrı́guez Couto, S., Gundı́n, M., Lorenzo, M., & Ángeles Sanromán, M. (2002). Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid-state conditions. Process Biochemistry, 38, 249–255.

    Article  Google Scholar 

  26. Özşölen, F., Aytar, P., Gedikli, S., Çelikdemir, M., Ardiç, M., & Çabuk, A. (2010). Enhanced production and stability of laccase using some fungi on different lignocellulosic materials. Journal of Applied Biological Sciences, 4, 69–78.

    Google Scholar 

  27. Adekunle, A. E., Zhang, C., Guo, C., & Liu, C.-Z. (2016). Laccase production from Trametes versicolor in solid-state fermentation of steam-exploded pretreated cornstalk. Waste and Biomass Valorization. doi:10.1007/s12649-016-9562-9.

    Google Scholar 

  28. de Souza, É. S., de L. Sampaio, I., de L. Freire, A. K., da Silva, B. K. S., da S. Sobrinho, A., Lima, A. M., & Souza, J. V. B. (2011). Production of Trametes versicolor laccase by solid-state fermentation using a fixed-bed bioreactor. Food, Agriculture and Environment, 9, 55–58.

  29. Asgher, M., Nasir Iqbal, H. M., Asad, M. J., & Asad, H. M. (2012). Kinetic characterization of purified laccase produced from Trametes versicolor IBL-04 in solid-state bio-processing of corncobs. BioResources, 7, 1171–1188.

    Google Scholar 

  30. Żuchowski, J., Pecio, L., Jaszek, M., & Stochmal, A. (2013). Solid-state fermentation of rapeseed meal with the white-rot fungi Trametes versicolor and Pleurotus ostreatus. Applied Biochemistry and Biotechnology, 171, 2075–2081.

    Article  Google Scholar 

  31. Iandolo, D., Piscitelli, A., Sannia, G., & Faraco, V. (2011). Enzyme production by solid substrate fermentation of Pleurotus ostreatus and Trametes versicolor on tomato pomace. Applied Biochemistry and Biotechnology, 163, 40–51.

    Article  CAS  Google Scholar 

  32. Xin, F., & Geng, A. (2011). Utilization of horticultural waste for laccase production by Trametes versicolor under solid-state fermentation. Applied Biochemistry and Biotechnology, 163, 235–246.

    Article  CAS  Google Scholar 

  33. Senthivelan, T., Kanagaraj, J., & Panda, R. C. (2016). Recent trends in fungal laccase for various industrial applications: an eco-friendly approach: a review. Biotechnology and Bioprocess Engineering, 21, 19–38.

    Article  CAS  Google Scholar 

  34. Moilanen, U., Winquist, E., Mattila, T., Hatakka, A., & Eerikäïnen, T. (2015). Production of manganese peroxidase and laccase in a solid-state bioreactor and modelling of enzyme production kinetics. Bioporcess Biosystems Engineering, 38, 57–68.

    Article  CAS  Google Scholar 

  35. Asgher, M., & Nasir Iqbal, H. M. (2011). Characterisation of a novel manganese-peroxidase purified from solid-state culture of Trametes versicolor IBL-04. BioResources, 6, 4302–4315.

    Google Scholar 

  36. Planinić, M., Zelić, B., Čubel, I., Bucić-Kojić, A., & Tišma, M. (2016). Corn forage treatment by T. versicolor in a tray bioreactor. Waste Management & Research, 34, 802–805.

  37. Aliakbarian, B., Casazza, A. A., & Perego, P. (2011). Valorization of olive oil solid waste using high pressure–high temperature reactor. Food Chemistry, 128, 704–710.

    Article  CAS  Google Scholar 

  38. Tišma, M., Žnidaršič-Plazl, P., Vasić-Rački, Đ., & Zelić, B. (2012). Optimization of laccase production by Trametes versicolor cultivated on industrial waste. Applied Biochemistry and Biotechnology, 166, 36–46.

    Article  Google Scholar 

  39. Kapich, A. N., Prior, B. A., Botha, A., Galkin, S., Lundell, T., & Hatakka, A. (2004). Effect of lignocellulose–containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enzyme and Microbial Technology, 34, 187–195.

    Article  CAS  Google Scholar 

  40. Tišma, M., Žnidaršič-Plazl, P., Plazl, I., Zelić, B., & Vasić-Rački, Đ. (2008). Modelling of L-DOPA oxidation catalyzed by laccase. Chemical and Biochemical Engineering Quarterly, 3, 307–313.

    Google Scholar 

  41. Salgado, J. M., Max, B., Rodríguez-Solana, R., & Domínguez, J. M. (2012). Purification of ferulic acid solubilized from agroindustrial wastes and further conversion into 4-vinyl guaiacol by Streptomyces setonii using solid-state fermentation. Industrial Crops and Products, 39, 52–61.

    Article  CAS  Google Scholar 

  42. de Oliveira, D. M., Finger-Teixeira, A., Rodrigues Mota, T., Salvador, V. H., Moreira-Vilar, F. C., Correa Molinari, H. B., Craig Mitchell, R. A., Marchiosi, R., Ferrarese-Filho, O., & Dantas dos Santos, W. (2015). Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnology Journal, 13, 1224–1232.

    Article  Google Scholar 

  43. Barbosa, E. S., Perrone, D., Vendramini, A. L., & Ferriera Leite, S. G. (2008). Vanillin production by Phanerochaete chrysosporium grown on green coconut agro-industrial husk in solid-state fermentation. BioResources, 3, 1042–1050.

    Google Scholar 

  44. Dinis, M. J., Bezerra, R. M. F., Nunes, F., Dias, A. A., Guedes, C. V., Ferreira, L. M. M., Cone, J. W., Marques, G. S. M., Barros, A. R. N., & Rodrigues, M. A. M. (2009). Modification of wheat straw lignin by solid-state fermentation with white-rot fungi. Bioresource Technology, 100, 4829–4835.

    Article  CAS  Google Scholar 

  45. Cai, S., Wang, O., Wu, W., Zhu, S., Zhou, F., Ji, B., Gao, F., Zhang, D., Liu, J., & Cheng, Q. (2012). Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats (Avena sativa L). Journal of Agricultural and Food Chemistry, 60, 507–513.

    Article  CAS  Google Scholar 

  46. Dueñas, M., Hernández, T., Robredo, S., Lamparski, G., Estrella, I., & Muñoz, R. (2012). Bioactive phenolic compounds of soybean (Glycine max cv. merit): modification by different microbiological fermentations. Polish Journal of Food and Nutrition Sciences, 62, 241–250.

    Article  Google Scholar 

  47. Asgher, M., Bhatti, H. N., Ashraf, M., & Legge, R. L. (2008). Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation, 19, 771–783.

    Article  CAS  Google Scholar 

  48. Knežević, A., Stajić, M., Jovanović, V. M., Kovačević, V., Ćilerdžić, J., Milovanović, I., & Vukojević, J. (2016). Induction of wheat straw delignification by Trametes species. Science Report, 6, 26529.

    Article  Google Scholar 

  49. Chhaya, U., & Gupte, A. (2013). Effect of different cultivation conditions and inducers on the production of laccase by the litter-dwelling fungal isolate Fusarium incarnatum LD-3 under solid substrate fermentation. Annals of Microbiology, 63, 2015–2223.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge financial support from the ProBioTech project (RC. 2.2.08-0045) which is co-financed by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Tišma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucić-Kojić, A., Šelo, G., Zelić, B. et al. Recovery of Phenolic Acid and Enzyme Production from Corn Silage Biologically Treated by Trametes versicolor . Appl Biochem Biotechnol 181, 948–960 (2017). https://doi.org/10.1007/s12010-016-2261-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2261-y

Keywords

Navigation