Trehalose-6-Phosphate as a Potential Lead Candidate for the Development of Tps1 Inhibitors: Insights from the Trehalose Biosynthesis Pathway in Diverse Yeast Species

Abstract

In some pathogens, trehalose biosynthesis is induced in response to stress as a protection mechanism. This pathway is an attractive target for antimicrobials as neither the enzymes, Tps1, and Tps2, nor is trehalose present in humans. Accumulation of T6P in Candida albicans, achieved by deletion of TPS2, resulted in strong reduction of fungal virulence. In this work, the effect of T6P on Tps1 activity was evaluated. Saccharomyces cerevisiae, C. albicans, and Candida tropicalis were used as experimental models. As expected, a heat stress induced both trehalose accumulation and increased Tps1 activity. However, the addition of 125 μM T6P to extracts obtained from stressed cells totally abolished or reduced in 50 and 60 % the induction of Tps1 activity in S. cerevisiae, C. tropicalis, and C. albicans, respectively. According to our results, T6P is an uncompetitive inhibitor of S. cerevisiae Tps1. This kind of inhibitor is able to decrease the rate of reaction to zero at increased concentrations. Based on the similarities found in sequence and function between Tps1 of S. cerevisiae and some pathogens and on the inhibitory effect of T6P on Tps1 activity observed in vitro, novel drugs can be developed for the treatment of infectious diseases caused by organisms whose infectivity and survival on the host depend on trehalose.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Singer, M. A., & Lindquist, S. (1998). Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends in Biotechnology, 16, 460–468.

    CAS  Article  Google Scholar 

  2. 2.

    Benaroudj, N., Lee, D. H., & Goldberg, A. L. (2001). Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. The Journal of Biological Chemistry, 276, 24261–24267.

    CAS  Article  Google Scholar 

  3. 3.

    Crowe, J. H., Crowe, L. M., & Chapman, D. (1984). Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science, 223, 701–703.

    CAS  Article  Google Scholar 

  4. 4.

    Singer, M. A., & Lindquist, S. (1984). Multiple effects of trehalose on protein folding in vitro and in vivo. Molecular Cell, 1, 639–648.

    Article  Google Scholar 

  5. 5.

    Cray, J. A., Stevenson, A., Ball, P., Bankar, S. B., Eleutherio, E. C. A., Ezeji, T. C., Singhal, R. S., Thevelein, J. M., Timson, D., & Hallsworth, J. E. (2015). Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Current Opinion in Biotechnology, 33, 228–259.

    CAS  Article  Google Scholar 

  6. 6.

    Van Dijck, P., De Rop, L., Szlufcik, K., Van Ael, E., & Thevelein, J. M. (2002). Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation. Infection and Immunity, 70, 1772–1782.

    CAS  Article  Google Scholar 

  7. 7.

    Zaragoza, O., Blazquez, M. A., & Gancedo, C. (1998). Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. Journal of Bacteriology, 180, 3809–3815.

    CAS  Google Scholar 

  8. 8.

    Maidan, M. M., De Rop, L., Relloso, M., Diez-Orejas, R., Thevelein, J. M., & Van Dijck, P. (2008). Combined inactivation of the Candida albicans GPR1 and TPS2 genes results in avirulence in a mouse model for systemic infection. Infection and Immunity, 76, 1686–1694.

    CAS  Article  Google Scholar 

  9. 9.

    Ngamskulrungroj, P., Himmelreich, U., Breger, J. A., Wilson, C., Chayakulkeeree, M., Krockenberger, M. B., Malik, R., Daniel, H. M., Toffaletti, D., Djordjevic, J. T., Mylonakis, E., Meyer, W., & Perfect, J. R. (2009). The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii. Infection and Immunity, 77, 4584–4596.

    CAS  Article  Google Scholar 

  10. 10.

    Petzold, E. W., Himmelreich, U., Mylonakis, E., Rude, T., Toffaletti, D., Cox, G. M., Miller, J. L., & Perfect, J. R. (2006). Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infection and Immunity, 74, 5877–5887.

    CAS  Article  Google Scholar 

  11. 11.

    Cabib, E., & Leloir, L. F. (1958). The biosynthesis of trehalose phosphate. The Journal of Biological Chemistry, 231, 259–275.

    CAS  Google Scholar 

  12. 12.

    Avonce, N., Mendoza-Vargas, A., Morett, E., & Iturriaga, G. (2006). Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology, 6, 109.

    Article  Google Scholar 

  13. 13.

    Elbein, A. D., Pan, Y. T., Pastuszak, I., & Carroll, D. (2003). New insights on trehalose: a multifunctional molecule. Glycobiology, 13, 17R–27R.

    CAS  Article  Google Scholar 

  14. 14.

    Wannet, W. J., Op den Camp, H. J., Wisselink, H. W., van der Drift, C., Van Griensven, L. J., & Vogels, G. D. (1998). Purification and characterization of trehalose phosphorylase from the commercial mushroom Agaricus bisporus. Biochimica et Biophysica Acta, 1425, 177–188.

    CAS  Article  Google Scholar 

  15. 15.

    Qu, Q. (2004). TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. Journal of Biological Chemistry, 279, 47890–47897.

    CAS  Article  Google Scholar 

  16. 16.

    Voit, E. O. (2003). Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations and canonical model analysis. Journal of Theoretical Biology, 223, 55–78.

    CAS  Article  Google Scholar 

  17. 17.

    Bell, W., Sum, W., Hohmann, S., Wera, S., Reinders, A., De Vrgilio, C., Wiemken, A., & Thevelein, J. M. (1998). Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. The Journal of Biological Chemistry, 273, 33311–33319.

    CAS  Article  Google Scholar 

  18. 18.

    Pan, Y. T., Carroll, J. D., & Elbein, A. D. (2002). Trehalose-phosphate synthase of mycobacterium tuberculosis. Cloning, expression and properties of the recombinant enzyme. European Journal of Biochemistry, 269, 6091–6100.

    CAS  Article  Google Scholar 

  19. 19.

    Bonini, B. M., Van Vaeck, C., Larsson, C., Gustafsson, L., Ma, P., Winderickx, J., Vand Dijck, P., & Thevelein, J. M. (2000). Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. The Biochemical Journal, 350, 261–268.

    CAS  Article  Google Scholar 

  20. 20.

    McDougall, J., Kaasen, I., & Strøm, A. R. (1993). A yeast gene for trehalose-6-phosphate synthase and its complementation of an Escherichia coli otsA mutant. FEMS Microbiology Letters, 107, 25–30.

    CAS  Article  Google Scholar 

  21. 21.

    Hottiger, T., Schmutz, P., & Wiemken, A. (1987). Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. Journal of Bacteriology, 169, 5518–5522.

    CAS  Article  Google Scholar 

  22. 22.

    Neves, M. J., & François, J. (1992). On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. The Biochemical Journal, 288, 859–864.

    CAS  Article  Google Scholar 

  23. 23.

    Ribeiro, M. J., Silva, J. T., & Panek, A. D. (1994). Trehalose metabolism in Saccharomyces cerevisiae during heat-shock. Biochimica et Biophysica Acta, 1200, 139–147.

    CAS  Article  Google Scholar 

  24. 24.

    Nery, D. M., Da Silva, C. G., Mariani, D., Fernandes, P. N., Pereira, M. D., Panek, A. D., & Eleutherio, E. C. A. (2008). The role of trehalose and its transporter in protection against reactive oxygen species. Biochimica et Biophysica Acta, 1780, 1408–1411.

    CAS  Article  Google Scholar 

  25. 25.

    Stickland, L. H. (1951). The determination of small quantities of bacteria by means of the biuret reaction. Journal of General Microbiology, 5, 698–703.

    CAS  Article  Google Scholar 

  26. 26.

    Trevisol, E. T. V., Panek, A. D., De Mesquita, J. F., & Eleutherio, E. C. A. (2014). Regulation of the yeast trehalose-synthase complex by cyclic AMP-dependent phosphorylation. Biochimica et Biophysica Acta, 1849, 1646–1650.

    Article  Google Scholar 

  27. 27.

    Chaudhuri, P., Basu, A., Sengupta, S., Lahiri, S., Dutta, T., & Ghosh, A. K. (2009). Studies on substrate specificity and activity regulating factors of trehalose-6-phosphate synthase of Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1790, 368–374.

    CAS  Article  Google Scholar 

  28. 28.

    Smallbone, K., Malys, N., Messiha, H. L., Wishart, J. A., & Simeonidis, E. (2011). Building a kinetic model of trehalose biosynthesis in Saccharomyces cerevisiae. Methods in Enzymology, 500, 355–370.

    CAS  Article  Google Scholar 

  29. 29.

    Ring, B., Wrighton, S. A., & Mohutsky, M. (2014). Reversible mechanisms of enzyme inhibition and resulting clinical significance. Methods in Molecular Biology, 1113, 37–56.

    CAS  Article  Google Scholar 

  30. 30.

    Thevelein, J. M., & Hohmann, S. (1995). Trehalose synthase: guard to the gate of glycolysis in yeast? Trends in Biochemical Sciences, 20, 3–10.

    CAS  Article  Google Scholar 

  31. 31.

    Blázquez, M. A., Lagunas, R., Gancedo, C., & Gancedo, J. M. (1993). Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Letters, 329, 51–54.

    Article  Google Scholar 

  32. 32.

    Kothavade, R. J., Kura, M. M., Valand, A. G., & Panthaki, M. H. (2010). Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. Journal of Medical Microbiology, 59, 873–880.

    CAS  Article  Google Scholar 

  33. 33.

    Goldani, L. Z., & Santos, R. P. (2010). Candida tropicalis as an emerging pathogen in Candida meningitis: case report and review. Brazilian Journal of Infectious Disease, 14, 631–633.

    Article  Google Scholar 

  34. 34.

    Eleutherio, E., Panek, A., De Mesquita, J. F., Trevisol, E., & Magalhães, R. (2014). Revisiting yeast trehalose metabolism. Current Genetics, 61, 263–274.

    Article  Google Scholar 

  35. 35.

    Murphy, H. N., Stewart, G. R., Mischenko, V. V., Apt, A. S., Harris, R., McAlister, M. S., Driscoll, P. C., Young, D. B., & Robertson, B. D. (2005). The OtsAB pathway is essential for trehalose biosynthesis in mycobacterium tuberculosis. Journal of Biological Chemistry, 280, 14524–14529.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by FAPERJ, CNPq, and CAPES. We thank Prof Andre Luis Santos from the Institute of Microbiology, Federal University of Rio de Janeiro, Brazil, for supplying the C. albicans and C. tropicalis strains.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elis C. A. Eleutherio.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magalhães, R.S.S., De Lima, K.C., de Almeida, D.S.G. et al. Trehalose-6-Phosphate as a Potential Lead Candidate for the Development of Tps1 Inhibitors: Insights from the Trehalose Biosynthesis Pathway in Diverse Yeast Species. Appl Biochem Biotechnol 181, 914–924 (2017). https://doi.org/10.1007/s12010-016-2258-6

Download citation

Keywords

  • Trehalose-6-phosphate
  • Trehalose-6-phosphate synthase
  • Inhibition
  • Saccharomyces cerevisiae
  • Candida albicans
  • Candida tropicalis