Skip to main content

Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: a Review

Abstract

The essentiality of 14 mineral elements so far have been reported in plant nutrition. Eight of these elements were known as micronutrients due to their lower concentrations in plants (usually ≤100 mg/kg/dw). However, it is still challenging to mention an exact number of plant micronutrients since some elements have not been strictly proposed yet either as essential or beneficial. Micronutrients participate in very diverse metabolic processes, including from the primary and secondary metabolism to the cell defense, and from the signal transduction to the gene regulation, energy metabolism, and hormone perception. Thus, the attempt to understand the molecular mechanism(s) behind their transport has great importance in terms of basic and applied plant sciences. Moreover, their deficiency or toxicity also caused serious disease symptoms in plants, even plant destruction if not treated, and many people around the world suffer from the plant-based dietary deficiencies or metal toxicities. In this sense, shedding some light on this issue, the 13 mineral elements (Fe, B, Cu, Mn, Mo, Si, Zn, Ni, Cl, Se, Na, Al, and Co), required by plants at trace amounts, has been reviewed with the primary focus on the transport proteins (transporters/channels) in plant roots. So, providing the compiled but extensive information about the structural and functional roles of micronutrient transport genes/proteins in plant roots.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Barker, A. V., & Pilbeam, D. J. (Eds.). (2015). Handbook of plant nutrition. CRC press.

  2. 2.

    Mengel, K., Kosegarten, H., Kirkby, E. A., & Appel, T. (Eds.) (2001). Principles of plant nutrition. Springer Science and Business, Media.

  3. 3.

    Maathuis, F. J. M. (2013). Plant mineral nutrients: methods and protocols. New York: Humana Press.

    Book  Google Scholar 

  4. 4.

    Maathuis, F. J., & Diatloff, E. (2013). Roles and functions of plant mineral nutrients. Plant Mineral Nutrients: Methods and Protocols, 1–21.

  5. 5.

    Marschner, H. (1995). Functions of mineral nutrients: macronutrients. Mineral nutrition of higher plants, 2, Academic Press, London, 379–396.

  6. 6.

    Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M. L., & Eide, D. (1998). Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences, 95, 7220–7224.

    CAS  Article  Google Scholar 

  7. 7.

    Underwood, E. (2012). Trace elements in human and animal nutrition 4e. Elsevier.

  8. 8.

    Marschner, P. (2012). Marschner’s mineral nutrition of higher plants. Boston, MA: Academic Press.

    Google Scholar 

  9. 9.

    Tavsan, Z., & Kayali, H. A. (2013). The effect of iron and copper as an essential nutrient on mitochondrial electron transport system and lipid peroxidation in Trichoderma harzianum. Applied Biochemistry and Biotechnology, 170(7), 1665–1675.

    CAS  Article  Google Scholar 

  10. 10.

    Vatansever, R., Filiz, E., & Ozyigit, I. I. (2015). Genome-wide analysis of iron-regulated transporter 1 (IRT1) genes in plants. Horticulture, Environment, and Biotechnology, 56(4), 516–523.

    CAS  Article  Google Scholar 

  11. 11.

    Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M. L., Briat, J. F., et al. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell Online, 14, 1223–1233.

    CAS  Article  Google Scholar 

  12. 12.

    Kobayashi, T., & Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63, 131–152.

    CAS  Article  Google Scholar 

  13. 13.

    Tombuloğlu, H., Ablazov, A., & Filiz, E. (2016). Genome-wide analysis of response to low sulfur (LSU) genes in grass species and expression profiling of model grass species Brachypodium distachyon under S-deficiency. Turkish Journal of Biology. doi:10.3906/biy-1508-32.

    Google Scholar 

  14. 14.

    López-Millán, A. F., Grusak, M. A., Abadía Bayona, A., & Abadía Bayona, J. (2013). Iron deficiency in plants: an insight from proteomic approaches. Frontiers in Plant Science, 4, 254.

    Article  Google Scholar 

  15. 15.

    Kim, S. A., & Guerinot, M. L. (2007). Mining iron: iron uptake and transport in plants. FEBS Letters, 581, 2273–2280.

    CAS  Article  Google Scholar 

  16. 16.

    Briat, J. F., & Lobr’eaux, S. (1997). Iron transport and storage in plants. Trends in Plant Sciences, 2, 187–193.

    Article  Google Scholar 

  17. 17.

    Briat, J. F., Dubos, C., & Gaymard, F. (2015). Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, 20(1), 33–40.

    CAS  Article  Google Scholar 

  18. 18.

    Römheld, V., & Marschner, H. (1986). Evidence for a specific uptake system for iron phytosiderophore in roots of grasses. Plant Physiology, 80, 175–180.

    Article  Google Scholar 

  19. 19.

    Higuchi, K., Suzuki, K., Nakanishi, H., Yamaguchi, H., Nishizawa, N. K., & Mori, S. (1999). Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiology, 119, 471–479.

    CAS  Article  Google Scholar 

  20. 20.

    Takahashi, M., Yamaguchi, H., Nakanishi, H., Shioiri, T., Nishizawa, N. K., & Mori, S. (1999). Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (strategy II) in graminaceous plants. Plant Physiology, 121, 947–956.

    CAS  Article  Google Scholar 

  21. 21.

    Bashir, K., Inoue, H., Nagasaka, S., Takahashi, M., Nakanishi, H., Mori, S., et al. (2006). Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. Journal of Biological Chemistry, 43, 32395–32402.

    Article  CAS  Google Scholar 

  22. 22.

    Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M., Kakei, Y., Suzuki, K., et al. (2009). Rice OsYSL15 is an iron-regulated iron (III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. Journal of Biological Chemistry, 284, 3470–3479.

    CAS  Article  Google Scholar 

  23. 23.

    Lee, S., Chiecko, J. C., Kim, S. A., Walker, E. L., Lee, Y., Guerinot, M. L., et al. (2009). Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiology, 150, 786–800.

    CAS  Article  Google Scholar 

  24. 24.

    Nozoye, T., Nagasaka, S., Kobayashi, T., Takahashi, M., Sato, Y., Sato, M., et al. (2011). Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Journal of Biological Chemistry, 286, 5446–5454.

    CAS  Article  Google Scholar 

  25. 25.

    Thomine, S., & Vert, G. (2013). Iron transport in plants: better be safe than sorry. Current Opinion in Plant Biology, 16(3), 322–327.

    CAS  Article  Google Scholar 

  26. 26.

    Colangelo, E. P., & Guerinot, M. L. (2006). Put the metal to the petal: metal uptake and transport throughout plants. Current Opinion in Plant Biology, 9, 322–330.

    CAS  Article  Google Scholar 

  27. 27.

    Guerinot, M. L. (2000). The ZIP family of metal transporters. Biochimica et Biophysica Acta (BBA), 1465, 190–198.

    CAS  Article  Google Scholar 

  28. 28.

    Eng, B. H., Guerinot, M. L., Eide, D., & Saier Jr., M. H. (1998). Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. Journal of Membrane Biology, 166, 1–7.

    CAS  Article  Google Scholar 

  29. 29.

    Thomine, S., Wang, R., Ward, J. M., Crawford, N. M., & Schroeder, J. I. (2000). Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences, USA, 97, 4991–4996.

    CAS  Article  Google Scholar 

  30. 30.

    Nevo, Y., & Nelson, N. (2006). The NRAMP family of metal-iontransporters. Biochimica et Biophysica Acta (BBA), 1763, 609–620.

    CAS  Article  Google Scholar 

  31. 31.

    Xia, J., Yamaji, N., Kasai, T., & Ma, J. F. (2010). Plasma membrane-localized trans-Porter for aluminum in rice. Proceedings of the National Academy of Sciences, USA, 107, 18381–18385.

    CAS  Article  Google Scholar 

  32. 32.

    Cellier, M., Prive, G., Belouchi, A., Kwan, T., Rodrigues, V., Chia, W., et al. (1995). Nramp defines a family of membrane proteins. Proceedings of the National Academy of Sciences, USA, 92, 10089–10093.

    CAS  Article  Google Scholar 

  33. 33.

    Schaaf, G., Ludewig, U., Erenoglu, B. E., Mori, S., Kitahara, T., & Von Wiren, N. (2004). ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. Journal of Biological Chemistry, 279, 9091–9096.

    CAS  Article  Google Scholar 

  34. 34.

    Yen, M. R., Tseng, Y. H., & Saier Jr., M. H. (2001). Maize yellow Stripe1, an iron-phytosiderophore uptake transporter, is a member of the oligopeptide transporter (OPT) family. Microbiology, 147, 2881–2883.

    CAS  Article  Google Scholar 

  35. 35.

    Höreth, S., Detterbeck, A., Ahmadi, H., Pongrac, P., & Clemens, S. (2015). Molecular analysis of within-plant Zn mobility in a metal hyperaccumulator and a crop model system. In OF ABSTRACTS (p. 22).

  36. 36.

    Fox, T. C., & Guerinot, M. L. (1998). Molecular biology of cation transport in plants. Annual Review of Plant Biology, 49, 669–696.

    CAS  Article  Google Scholar 

  37. 37.

    Sadeghzadeh, B., & Rengel, Z. (2011). Zinc in soils and crop nutrition. The molecular and physiological basis of nutrient use efficiency in crops, John Wiley & Sons, Inc., pp. 335–375.

  38. 38.

    Maser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., et al. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 126, 1646–1667.

    CAS  Article  Google Scholar 

  39. 39.

    Lin, Y. F., Liang, H. M., Yang, S. Y., Boch, A., Clemens, S., Chen, C. C., et al. (2009). Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytologist, 182, 392–404.

    CAS  Article  Google Scholar 

  40. 40.

    Assunção, A. G., Herrero, E., Lin, Y. F., Huettel, B., Talukdar, S., Smaczniak, C., Immink, R. H., Eldik, Mv., Fiers, M., Schat, H. et al. (2010). Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 10296–10301.

  41. 41.

    Connolly, E. L., Fett, J. P., & Guerinot, M. L. (2002). Expression of the irt1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell, 14, 1347–1357.

    CAS  Article  Google Scholar 

  42. 42.

    Vert, G., Briat, J. F., & Curie, C. (2001). Arabidopsis irt2 gene encodes a root-periphery iron transporter. Plant Journal, 26, 181–189.

    CAS  Article  Google Scholar 

  43. 43.

    Moreau, S., Thomson, R. M., Kaiser, B. N., Trevaskis, B., Guerinot, M. L., Udvardi, M. K., et al. (2002). GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. Journal of Biological Chemistry, 15, 4738–4746.

    Article  CAS  Google Scholar 

  44. 44.

    Ramesh, S. A., Shin, R., Eide, D. J., & Schachtman, D. P. (2003). Defferential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology, 133, 126–134.

    CAS  Article  Google Scholar 

  45. 45.

    Ishimaru, Y., Suzuki, M., Kobayashi, T., Takahashi, M., Nakanishi, H., Mori, S., et al. (2005). OsZIP4, a novel zinc-regulated zinc transporter in rice. Journal of Experimental Botany, 56, 3207–3214.

    CAS  Article  Google Scholar 

  46. 46.

    Lopez-Millan, A. F., Ellis, D. R., & Grusak, M. A. (2004). Identification and characterization of several new members of the zip family of metal ion transporters in Medicago truncatula. Plant Mol Biology, 54, 583–596.

    CAS  Article  Google Scholar 

  47. 47.

    Vatansever, R., Ozyigit, I. I., & Filiz, E. (2015). Comparative and phylogenetic analysis of zinc (Zn) transporter genes/proteins in plants. Turkish Journal of Biology. doi:10.3906/biy-1501-91.

    Google Scholar 

  48. 48.

    Coudray, N., Zhang, Z., Clark, K. M., Ubarretxena, I., Beckstein, O., Dumont, M. E., et al. (2016). Structure of the borate transporter Bor1p by cryo-EM. Biophysical Journal, 110(3), 137–138.

    Article  Google Scholar 

  49. 49.

    Shen, Z. G., Liang, Y. C., & Shen, K. (1993). Effect of boron on the nitrate reductase-activity in oilseed rape plants. Journal of Plant Nutrition, 16, 1229–1239.

    CAS  Article  Google Scholar 

  50. 50.

    Camacho-Cristóbal, J. J., & González-Fontes, A. (2007). Boron deficiency decreases plasmalemma H+−ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots. Planta, 226, 443–451.

    Article  CAS  Google Scholar 

  51. 51.

    Bassil, E., Hu, H., & Brown, P. H. (2004). Use of phenylboronic acids to investigate boron function in plants. Possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion. Plant Physiology, 136, 3383–3395.

    CAS  Article  Google Scholar 

  52. 52.

    Gonzalez-Fontes, A., Rexach, J., Navarro-Gochicoa, M. T., Herrera-Rodrıguez, M. B., Beato, V. M., Maldonado, J. M., et al. (2008). Is boron involved solely in structural roles in vascular plants? Plant Signaling and Behavior, 3, 24–26.

    Article  Google Scholar 

  53. 53.

    Ferrol, N., & Donaire, J. P. (1992). Effect of boron on plasma membrane proton extrusion and redox activity in sunflower cells. Plant Science, 86, 41–47.

    CAS  Article  Google Scholar 

  54. 54.

    Wang, Z. Y., Tang, Y. L., Zhang, F. S., & Wang, H. (1999). Effect of boron and low temperature on membrane integrity of cucumber leaves. Journal of Plant Nutrition, 22, 543–550.

    CAS  Article  Google Scholar 

  55. 55.

    Fleischer, A., O’Neill, M. A., & Ehwald, R. (1999). The pore size of nongraminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiology, 121, 829–838.

    CAS  Article  Google Scholar 

  56. 56.

    Ryden, P., Sugimoto-Shirasu, K., Smith, A. C., Findlay, K., Reiter, W. D., & McCann, M. C. (2003). Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes. Plant Physiology, 132, 1033–1040.

    CAS  Article  Google Scholar 

  57. 57.

    Camacho-Cristóbal, J. J., Anzelotti, D., & González-Fontes, A. (2002). Changes in phenolic metabolism of tobacco plants during short-term boron deficiency. Plant Physiology and Biochemistry, 40, 997–1002.

    Article  Google Scholar 

  58. 58.

    Tanaka, M., & Fujiwara, T. (2008). Physiological roles and transport mechanisms of boron: perspectives from plants. European Journal of Physiology, 456, 671–677.

    CAS  Article  Google Scholar 

  59. 59.

    Dannel, F., Pfeffer, H., & R¨omheld, V. (2002). Update on boron in higher plant-uptake, primary translocation and compartmentation. Plant Biology, 4, 193–204.

    CAS  Article  Google Scholar 

  60. 60.

    Takano, J., Noguchi, K., Yasumori, M., Kobayashi, M., Gajdos, Z., Miwa, K., et al. (2002). Arabidopsis boron transporter for xylem loading. Nature, 420, 337–340.

    CAS  Article  Google Scholar 

  61. 61.

    Takano, J., Wada, M., Ludewig, U., Schaaf, G., von Wir ´en, N., & Fujiwara, T. (2006). The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell, 18, 1498–1509.

    Article  Google Scholar 

  62. 62.

    Kruse, E., Uehlein, N., & Kaldenhoff, R. (2006). The aquaporins. Genome Biology, 7, 206.

    Article  CAS  Google Scholar 

  63. 63.

    Nakagawa, Y., Hanaoka, H., Kobayashi, M., Miyoshi, K., Miwa, K., & Fujiwara, T. (2007). Cell-type specificity of the expression of OsBOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell, 19, 2624–2635.

    CAS  Article  Google Scholar 

  64. 64.

    Hanaoka, H., Uraguchi, S., Takano, J., Tanaka, M., & Fujiwara, T. (2014). OsNIP3; 1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. Plant Journal, 78, 890–902.

    CAS  Article  Google Scholar 

  65. 65.

    Takano, J., Miwa, K., & Fujiwara, T. (2008). Boron transport mechanisms: collaboration of channels and transporters. Trends in Plant Sciences, 13, 451–457.

    CAS  Article  Google Scholar 

  66. 66.

    Pérez-Castro, R., Kasai, K., Gainza-Cortés, F., Ruiz-Lara, S., Casaretto, J. A., Peña-Cortés, H., et al. (2012). VvBOR1, the grapevine ortholog of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L. Plant and Cell Physiology, 53(2), 485–494.

    Article  CAS  Google Scholar 

  67. 67.

    Sun, J., Shi, L., Zhang, C., & Xu, F. (2012). Cloning and characterization of boron transporters in Brassica napus. Molecular Biology Reports, 39, 1963–1973.

    CAS  Article  Google Scholar 

  68. 68.

    Domingues, D. S., Maximino Leite, S. M., & Cazerta Farro, A. P. (2005). Boron transport in eucalyptus. 2. Identification in silico of a putative boron transporter for xylem loading in eucalypt. Genetics and Molecular Biology, 28, 625–629.

    CAS  Article  Google Scholar 

  69. 69.

    Chatterjee, M., Tabi, Z., Galli, M., Malcomber, S., Buck, A., Muszynski, M., et al. (2014). The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility. Plant Cell, 26, 2962–2977.

    CAS  Article  Google Scholar 

  70. 70.

    Durbak, A. R., Phillips, K. A., Pike, S., O’Neill, M. A., Mares, J., Gallavotti, A., et al. (2014). Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. Plant Cell, 26, 2978–2995.

    CAS  Article  Google Scholar 

  71. 71.

    Leonard, A., Holloway, B., Guo, M., Rupe, M., Yu, G., Beatty, M., & Li, B. (2014). tassel-less1 encodes a boron channel protein required for inflorescence development in maize. Plant Cell Physiology, pcu036.

  72. 72.

    Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., et al. (2015). The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research, 22(11), 8148–8162.

    CAS  Article  Google Scholar 

  73. 73.

    Ng, I. S., Zheng, X., Wang, N., Chen, B. Y., Zhang, X., & Lu, Y. (2014). Copper response of Proteus hauseri based on proteomic and genetic expression and cell morphology analyses. Applied Biochemistry and Biotechnology, 173(5), 1057–1072.

    CAS  Article  Google Scholar 

  74. 74.

    Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212, 475–486.

    CAS  Article  Google Scholar 

  75. 75.

    Huffman, D. L., & O’Halloran, T. V. (2001). Function, structure, and mechanism of intracellular copper trafficking proteins. Annual Review of Biochemistry, 70, 677–701.

    CAS  Article  Google Scholar 

  76. 76.

    Burkhead, J. L., Gogolin, R. K. A., Abdel-Ghany, S. E., Cohu, C. M., & Pilon, M. (2009). Copper homeostasis. New Phytologist, 182, 799–816.

    CAS  Article  Google Scholar 

  77. 77.

    Pilon, M., Cohu, C. M., Ravet, K., Abdel-Ghany, S. E., & Gaymard, F. (2009). Essential transition metal homeostasis in plants. Current Opinion in Plant Biology, 12, 347–357.

    CAS  Article  Google Scholar 

  78. 78.

    Puig, S., & Peñarrubia, L. (2009). Placing metal micronutrients in context: transport and distribution in plants. Current Opinion in Plant Biology, 12, 299–306.

    CAS  Article  Google Scholar 

  79. 79.

    Eisses, J. F., & Kaplan, J. H. (2002). Molecular characterization of hCTR1, the human copper uptake protein. Journal of Biological Chemistry, 277, 29162–29171.

    CAS  Article  Google Scholar 

  80. 80.

    Puig, S., Lee, J., Lau, M., & Thiele, D. J. (2002). Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. Journal of Biological Chemistry, 277, 26021–26030.

    CAS  Article  Google Scholar 

  81. 81.

    Vatansever, R., Ozyigit, I. I., & Filiz, E. (2016). Genome-wide identification and comparative analysis of copper transporter genes in plants. Interdisciplinary Sciences: Computational Life Sciences, 1–14.

  82. 82.

    Jiang, J., Nadas, I. A., Kim, M. A., & Franz, K. J. (2005). A Mets motif peptide found in copper transport proteins selectively binds Cu (I) with methionine-only coordination. Inorganic Chemistry, 44, 9787–9794.

    CAS  Article  Google Scholar 

  83. 83.

    Beaudoin, J., Laliberté, J., & Labbé, S. (2006). Functional dissection of Ctr4 and Ctr5 amino-terminal regions reveals motifs with redundant roles in copper transport. Microbiology, 152, 209–222.

    CAS  Article  Google Scholar 

  84. 84.

    Page, M. D., Kropat, J., Hamel, P. P., & Merchant, S. S. (2009). Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation. Plant Cell Online, 21, 928–943.

    CAS  Article  Google Scholar 

  85. 85.

    Peñarrubia, L., Andrés-Colás, N., Moreno, J., & Puig, S. (2010). Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator? Journal of Biological Inorganic Chemistry, 15, 29–36.

    Article  CAS  Google Scholar 

  86. 86.

    Aller, S., Eng, G., De, E. T., Feo, C. J., & Unger, V. M. (2004). Eukaryotic CTR copper uptake transporters require two faces of the third transmembrane domain for helix packing, oligomerization, and function. Journal of Biological Chemistry, 279, 53435–53441.

    CAS  Article  Google Scholar 

  87. 87.

    Wu, X., Sinani, D., Kim, H., & Lee, J. (2009). Copper transport activity of yeast Ctr1 is down-regulated via its C terminus in response to excess copper. Journal of Biological Chemistry, 284, 4112–4122.

    CAS  Article  Google Scholar 

  88. 88.

    Abdel-Ghany, S. E., & Pilon, M. (2008). MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. Journal of Biological Chemistry, 283, 15932–15945.

    CAS  Article  Google Scholar 

  89. 89.

    Yamasaki, H., Hayashi, M., Fukazawa, M., Kobayashi, Y., & Shikanai, T. (2009). SQUAMOSA promoter binding protein–like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell Online, 21, 347–361.

    CAS  Article  Google Scholar 

  90. 90.

    Kruse, T., Gehl, C., Geisler, M., Lehrke, M., Ringel, P., Hallier, S., et al. (2010). Identification and biochemical characterization of molybdenum cofactor-binding proteins from Arabidopsis thaliana. Journal of Biological Chemistry, 285, 6623–6635.

    CAS  Article  Google Scholar 

  91. 91.

    Mendel, R. R., & Leimkühler, S. (2015). The biosynthesis of the molybdenum cofactors. JBIC Journal of Biological Inorganic Chemistry, 20(2), 337–347.

    CAS  Article  Google Scholar 

  92. 92.

    Kaiser, B. N., Gridley, K. L., Brady, J. N., Phillips, T., & Tyerman, S. D. (2005). The role of molybdenum in agricultural plant production. Annual Botany, 96, 745–754.

    CAS  Article  Google Scholar 

  93. 93.

    Ide, Y., Kusano, M., Oikawa, A., Fukushima, A., Tomatsu, H., Saito, K., et al. (2011). Effects of molybdenum deficiency and defects in molybdate transporter MOT1 on transcript accumulation and nitrogen/Sulphur metabolism in Arabidopsis thaliana. Journal of Experimental Botany, 62, 1483–1497.

    CAS  Article  Google Scholar 

  94. 94.

    Hawkesford, M. J. (2003). Transporter gene families in plants: the sulphate transporter gene family-redundancy or specialization? Physiologia Plantarum, 117, 155–163.

    CAS  Article  Google Scholar 

  95. 95.

    Baxter, I., Muthukumar, B., Park, H. C., Buchner, P., Lahner, B., Danku, J., & Salt, D. E. (2008). Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). Plos Genetics, 4.

  96. 96.

    Bittner, F. (2014). Molybdenum metabolism in plants and crosstalk to iron. Frontier in Plant Sciences, 5.

  97. 97.

    Vatansever, R., Filiz, E., & Ozyigit, I. I. (2015). In silico identification and comparative analysis of molybdenum (Mo) transporter genes in plants. Brazilian Journal of Botany, 1–13.

  98. 98.

    Shibagaki, N., & Grossman, A. R. (2006). The role of the STAS domain in the function and biogenesis of a sulfate transporter as probed by random mutagenesis. Journal of Biological Chemistry, 281(32), 22964–22973.

    CAS  Article  Google Scholar 

  99. 99.

    Compton, E. L., Karinou, E., Naismith, J. H., Gabel, F., & Javelle, A. (2011). Low resolution structure of a bacterial SLC26 transporter reveals dimeric stoichiometry and mobile intracellular domains. Journal of Biological Chemistry, 286, 27058–27067.

    CAS  Article  Google Scholar 

  100. 100.

    Finn, R. D. (2012). Pfam: the protein families database. Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics.

  101. 101.

    Tejada-Jiménez, M., Llamas, Á., Sanz-Luque, E., Galván, A., & Fernández, E. (2007). A high- affinity molybdate transporter in eukaryotes. Proceedings of the National Academy of Sciences, 104, 20126–20130.

    Article  Google Scholar 

  102. 102.

    Zhu, Y., & Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34(2), 455–472.

    CAS  Article  Google Scholar 

  103. 103.

    Rodrigues, F. A., Resende, R. S., Dallagnol, L. J., & Datnoff, L. E. (2015). Silicon potentiates host defense mechanisms against infection by plant pathogens. In Silicon and Plant Diseases (pp. 109–138). Springer International Publishing.

  104. 104.

    Mitani, N., Yamaji, N., & Ma, J. F. (2008). Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflügers Archiv-European Journal of Physiology, 456(4), 679–686.

    CAS  Article  Google Scholar 

  105. 105.

    Zhang, C., Wang, L., Nie, Q., Zhang, W., & Zhang, F. (2008). Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environmental and Experimental Botany, 62, 300–307.

    CAS  Article  Google Scholar 

  106. 106.

    Ma, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50, 11–18.

    CAS  Article  Google Scholar 

  107. 107.

    Ashraf, M. A., Morshed, M. M., Ahammad, A. S., & Morshed, M. N. (2013). Computational study of silicon transporter protein in rice and wheat. International Journal of Computational Bioinformatics and In Silico Model, 2(4), 199–205.

    Google Scholar 

  108. 108.

    Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., et al. (2006). A silicon transporter in rice. Nature, 440, 688–691.

    CAS  Article  Google Scholar 

  109. 109.

    Bienert, G., & Chaumont, F. (2011). Plant aquaporins: roles in water homeostasis, nutrition, and signaling processes. In M. Geisler & K. Venema (Eds.), Transporters and pumps in plant signaling processes (pp. 3–36). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  110. 110.

    Wu, B., & Beitz, E. (2007). Aquaporins with selectivity for unconventional permeants. Cellular and Molecular Life Sciences, 64, 2413–2421.

    CAS  Article  Google Scholar 

  111. 111.

    Ilan, B., Tajkhorshid, E., Schulten, K., & Voth, G. A. (2004). The mechanism of proton exclusion in aquaporin channels. Proteins, 55, 223–228.

    CAS  Article  Google Scholar 

  112. 112.

    Forrest, K. L., & Bhave, M. (2007). Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Functional Integrative Genomics, 7, 263–289.

    CAS  Article  Google Scholar 

  113. 113.

    Harries, W. E., Akhavan, D., Miercke, L. J., Khademi, S., & Stroud, R. M. (2004). The channel architecture of aquaporin 0 at a 2.2 A° resolution. Proceedings of the National Academy of Sciences, USA, 101, 14045–14050.

    CAS  Article  Google Scholar 

  114. 114.

    Mitani-Ueno, N., Yamaji, N., Zhao, F. J., & Ma, J. F. (2011). The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. Journal of Experimental Botany, 62(12), 4391–4398.

    CAS  Article  Google Scholar 

  115. 115.

    Fu, D., Libson, A., Miercke, L. J., Weitzman, C., Nollert, P., Krucinski, J., et al. (2000). Structure of a glycerol-conducting channel and the basis for its selectivity. Science, 290, 481–486.

    CAS  Article  Google Scholar 

  116. 116.

    Sui, H., Han, B. G., Lee, J. K., Walian, P., & Jap, B. K. (2001). Structural basis of water-specific transport through the AQP1 water channel. Nature, 414, 872–878.

    CAS  Article  Google Scholar 

  117. 117.

    Ma, J. F., Yamaji, N., Mitani, N., Kazunori, T., Konishi, S., Fujiwara, T., et al. (2007). An efflux transporter of silicon in rice. Nature, 448, 209–212.

    CAS  Article  Google Scholar 

  118. 118.

    Ma, J. F. (2010). Si transporters in higher plant. In P. T. Jhon & P. G. Bienert (Eds.), MIPs and their role in the exchange of materials (pp. 99–109). Texas: Landes Bioscience.

    Chapter  Google Scholar 

  119. 119.

    Chiba, Y., Mitani, N., Yamaji, N., & Ma, J. F. (2009). HvLsi1 is a silicon influx transporter in barley. Plant Journal, 57, 810–818.

    CAS  Article  Google Scholar 

  120. 120.

    Mitani, N., Chiba, Y., Yamaji, N., & Ma, J. F. (2009). Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell, 21, 2133–2142.

    CAS  Article  Google Scholar 

  121. 121.

    Mitani, N., Yamaji, N., & Ma, J. F. (2009). Identification of maize silicon influx transporters. Plant and Cell Physiology, 50, 5–12.

    CAS  Article  Google Scholar 

  122. 122.

    Mitani, N., Yamaji, N., Ago, Y., Iwasaki, K., & Ma, J. F. (2011). Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant Journal, 66, 231–240.

    CAS  Article  Google Scholar 

  123. 123.

    Fernando, D. R., & Lynch, J. P. (2015). Manganese phytotoxicity: new light on an old problem. Annals of Botany, 116(3), 313–319.

    Article  Google Scholar 

  124. 124.

    Yin, C., Zhao, W., Zheng, L., Chen, L., Tan, Q., Shang, X., et al. (2014). High-level expression of a manganese superoxide dismutase (PoMn-SOD) from Pleurotus ostreatus in Pichia pastoris. Applied Biochemistry and Biotechnology, 174(1), 259–269.

    CAS  Article  Google Scholar 

  125. 125.

    Nickelsen, J., & Rengstl, B. (2013). Photosystem II assembly: from cyanobacteria to plants. Annual Review of Plant Biology, 64, 609–635.

    CAS  Article  Google Scholar 

  126. 126.

    Socha, A. L., & Guerinot, M. L. (2014). Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Frontiers in Plant Sciences, 5, 106.

    Google Scholar 

  127. 127.

    Cailliatte, R., Schikora, A., Briat, J. F., Mari, S., & Curie, C. (2010). High- affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell, 22, 904–917.

    CAS  Article  Google Scholar 

  128. 128.

    Vatansever, R., Filiz, E., & Ozyigit, I. I. (2016). In silico analysis of Mn transporters (NRAMP1) in various plant species. Molecular Biology Reports. doi:10.1007/s11033-016-3950-x.

    Google Scholar 

  129. 129.

    Thomine, S., Lelievre, F., Debarbieux, E., Schroeder, J. I., & Barbier-Brygoo, H. (2003). AtNRAMP3, a multi specific vacuolar metal transporter involved in plant responses to iron deficiency. Plant Journal, 34, 685–695.

    CAS  Article  Google Scholar 

  130. 130.

    Lanquar, V., Ramos, M. S., Lelievre, F., Barbier-Brygoo, H., Krieger-Liszkay, A., Kramer, U., et al. (2010). Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiology, 152, 1986–1999.

    CAS  Article  Google Scholar 

  131. 131.

    Yamaji, N., Sasaki, A., Xia, J. X., Yokosho, K., & Ma, J. F. (2013). Anode-based switch for preferential distribution of manganese in rice. Nature Communications, 4, 2442.

    Article  CAS  Google Scholar 

  132. 132.

    Sasaki, A., Yamaji, N., Yokosho, K., & Ma, J. F. (2012). Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell Online, 24, 2155–2167.

    CAS  Article  Google Scholar 

  133. 133.

    Yang, T. J., Perry, P. J., Ciani, S., Pandian, S., & Schmidt, W. (2008). Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. Journal of Experimental Botany, 59, 3453–3464.

    CAS  Article  Google Scholar 

  134. 134.

    Milner, M. J., Seamon, J., Craft, E., & Kochian, L. V. (2013). Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany, 64, 369–381.

    CAS  Article  Google Scholar 

  135. 135.

    Koike, S., Inoue, H., Mizuno, D., Takahashi, M., Nakanishi, H., Mori, S., et al. (2004). OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant Journal, 39, 415–424.

    CAS  Article  Google Scholar 

  136. 136.

    Sasaki, A., Yamaji, N., Xia, J., & Ma, J. F. (2011). OsYSL6 is involved in the detoxification of excess manganese in rice. Plant Physiology, 157, 1832–1840.

    CAS  Article  Google Scholar 

  137. 137.

    Conte, S. S., Chu, H. H., Rodriguez, D. C., Punshon, T., Vasques, K. A., Salt, D. E., et al. (2013). Arabidopsis thaliana yellow stripe1-like4 and yellowstripe1-like6 localize to internal cellular membranes and are involved in metal ion homeostasis. Frontiers in Plant. Sciences, 4, 283.

    CAS  Google Scholar 

  138. 138.

    Marshall, J., Corzo, A., Leigh, R. A., & Sanders, D. (1994). Membrane potential dependent calcium transport in right-side-out plasma membrane vesicles from Zea mays L. Roots. Plant Journal, 5, 683–694.

    CAS  Article  Google Scholar 

  139. 139.

    Wymer, C. L., Bibikova, T. N., & Gilroy, S. (1997). Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant Journal, 12, 427–439.

    CAS  Article  Google Scholar 

  140. 140.

    Curie, C., Alonso, J., Le Jean, M., Ecker, J., & Briat, J. (2000). Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochemical Journal, 347, 749–755.

    CAS  Article  Google Scholar 

  141. 141.

    Fabiano, C. C., Tezotto, T., Favarin, J. L., Polacco, J. C., & Mazzafera, P. (2015). Essentiality of nickel in plants: a role in plant stresses. Frontiers in plant science, 6.

  142. 142.

    Küpper, H., & Kroneck, P. M. (2007). Nickel in the environment and its role in the metabolism of plants and cyanobacteria. Metal Ions in Life Sciences, 2, 31–62.

    Google Scholar 

  143. 143.

    Polacco, J. C., Mazzafera, P., & Tezotto, T. (2013). Opinion–nickel and urease in plants: still many knowledge gaps. Plant Science, 199, 79–90.

    Article  CAS  Google Scholar 

  144. 144.

    Maier, T., Jacobi, A., Sauter, M., & Böck, A. (1993). The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-binding protein. Journal of Bacteriology, 175(3), 630–635.

    CAS  Article  Google Scholar 

  145. 145.

    van der Lelie, D., Wilmotte, A., & Wuertz, S. (1994). Plasmids for heavy metal resistance in Alcaligenes eutrophus CH34: mechanisms and applications. FEMS Microbiology Reviews, 14, 405–414.

    Article  Google Scholar 

  146. 146.

    Ragsdale, S. W. (1998). Nickel biochemistry. Current Opinion in Chemical Biology, 2(2), 208–215.

    CAS  Article  Google Scholar 

  147. 147.

    Mulrooney, S. B., & Hausinger, R. P. (2003). Nickel uptake and utilization by microorganisms. FEMS Microbiology Reviews, 27(2–3), 239–261.

    CAS  Article  Google Scholar 

  148. 148.

    Yusuf, M., Fariduddin, Q., Hayat, S., & Ahmad, A. (2011). Nickel: an overview of uptake, essentiality and toxicity in plants. Bulletin of Environmental Contamination and Toxicology, 86(1), 1–17.

    CAS  Article  Google Scholar 

  149. 149.

    Rajendran, P., Ashokkumar, B., Muthukrishnan, J., & Gunasekaran, P. (2002). Toxicity assessment of nickel using Aspergillus niger and its removal from an industrial effluent. Applied Biochemistry and Biotechnology, 102(1–6), 201–206.

    Article  Google Scholar 

  150. 150.

    Molas, J. (2002). Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni II complexes. Environmental and Experimental Botany, 47, 115–126.

    CAS  Article  Google Scholar 

  151. 151.

    Chen, C., Huang, D., & Liu, J. (2009). Functions and toxicity of nickel in plants: recent advances and future prospects. Clean, 37, 304–313.

    CAS  Google Scholar 

  152. 152.

    Gajewska, E., Wielanek, M., Bergier, K., & Skłodowska, M. (2009). Nickel induced depression of nitrogen assimilation in wheat roots. Acta Physiologiae Plantarum, 31, 1291–1300.

    CAS  Article  Google Scholar 

  153. 153.

    Dan, T. V., Krishnaraj, S., & Saxena, P. K. (2002). Cadmium and nickel uptake and accumulation in scented geranium (Pelargonielm sp. ‘Frensham’). Water. Air and Soil Pollution, 137, 355–364.

    CAS  Article  Google Scholar 

  154. 154.

    Vogel-Mikus, K., Drobne, D., & Regvar, M. (2005). Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thlaspi Praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution, 133, 233–242.

    CAS  Article  Google Scholar 

  155. 155.

    Seregin, I. V., & Kozhevnikova, A. D. (2006). Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53, 257–277.

    CAS  Article  Google Scholar 

  156. 156.

    Nishida, S., Tsuzuki, C., Kato, A., Aisu, A., Yoshida, J., & Mizuno, T. (2011). AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant and Cell Physiology, 52(8), 1433–1442.

    CAS  Article  Google Scholar 

  157. 157.

    Baetz, U., Eisenach, C., Tohge, T., Martinoia, E., & De Angeli, A. (2016). Vacuolar chloride fluxes impact ion content and distribution during early salinity stress. Plant Physiology, 00183.

  158. 158.

    Teodoro, A. E., Zingarelli, L., & Lado, P. (1998). Early changes of Cl efflux band H+ extrusion induced by osmotic stress in Arabidopsis thaliana cells. Physiologia Plantarum, 102, 29–37.

    CAS  Article  Google Scholar 

  159. 159.

    Xu, G., Magen, H., Tarchitzky, J., & Kafkafi, U. (2000). Advances in chloride nutrition. Advances in Agronomy, 68, 96–150.

    Google Scholar 

  160. 160.

    White, P. J., & Broadley, M. R. (2001). Chloride in soils and its uptake and movement within the plant: a review. Annals of Botany, 88, 967–988.

    CAS  Article  Google Scholar 

  161. 161.

    Teakle, N. L., & Tyerman, S. D. (2010). Mechanisms of Cl-transport contributing to salt tolerance. Plant, Cell & Environment, 33(4), 566–589.

    CAS  Article  Google Scholar 

  162. 162.

    Moya, J. L., Gomez-Cadenas, A., Primo-Millo, E., & Talon, M. (2003). Chloride absorption in salt-sensitive Carrizo citrange and salt tolerant Cleopatra mandarin citrus rootstocks is linked to water use. Journal of Experimental Botany, 54, 825–833.

    CAS  Article  Google Scholar 

  163. 163.

    Franklin, J. A., & Zwiazek, J. J. (2004). Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulphate. Physiologia Plantarum, 120, 482–490.

    CAS  Article  Google Scholar 

  164. 164.

    Luo, Q., Bingjun, Y., & Liu, Y. (2005). Differential selectivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. Journal of Plant Physiology, 162, 1003–1012.

    CAS  Article  Google Scholar 

  165. 165.

    Teakle, N. L., Real, D., & Colmer, T. D. (2006). Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legumes Lotus corniculatus and Lotus tenuis. Plant and Soil, 289, 369–383.

    CAS  Article  Google Scholar 

  166. 166.

    Teakle, N., Flowers, T., Real, D., & Colmer, T. (2007). Lotus tenuis Tolerates the interactive effects of salinity and waterlogging by ‘excluding’ Na+ and Cl- from the xylem. Journal of Experimental Botany, 58, 2169–2180.

    CAS  Article  Google Scholar 

  167. 167.

    Pilon-Smits, E. A. (2015). Selenium in plants. In Progress in botany (pp. 93–107). Springer International Publishing.

  168. 168.

    Chu, J. Z., Yao, X. Q., & Zhang, Z. N. (2010). Responses of wheat seedlings to exogenous selenium supply under cold stress. Biological Trace Element Research, 136(3), 355–363.

    CAS  Article  Google Scholar 

  169. 169.

    Hasanuzzaman, M., & Fujita, M. (2011). Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biological Trace Element Research, 143, 1758–1776.

    CAS  Article  Google Scholar 

  170. 170.

    Djanaguiraman, M., Prasad, P. V. V., & Seppänen, M. (2010). Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 48(12), 999–1007.

    CAS  Article  Google Scholar 

  171. 171.

    Pukacka, S., Ratajczak, E., & Kalemba, E. (2011). The protective role of selenium in recalcitrant Acer saccharium L. Seeds subjected to desiccation. Journal of Plant Physiology, 168(3), 220–225.

    CAS  Article  Google Scholar 

  172. 172.

    Kumar, M., Bijo, A. J., Baghel, R. S., Reddy, C. R. K., & Jha, B. (2012). Selenium and Spermine alleviates cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidant system and DNA methylation. Plant Physiology and Biochemistry, 51, 129–138.

    CAS  Article  Google Scholar 

  173. 173.

    Wang, C. Q. (2011). Water-stress mitigation by selenium in Trifolium repens L. Journal of Plant Nutrition and Soil Science, 174(2), 276–282.

    CAS  Article  Google Scholar 

  174. 174.

    Hartikainen, H., Xue, T. L., & Piironen, V. (2000). Selenium as an anti-oxidant and prooxidant in ryegrass. Plant and Soil, 225, 193–200.

    CAS  Article  Google Scholar 

  175. 175.

    Yao, X., Chu, J., & Ba, C. (2010). Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B. Biological Trace Element Research, 136(1), 96–105.

    CAS  Article  Google Scholar 

  176. 176.

    Pezzarossa, B., Remorini, D., Gentile, M. L., & Massai, R. (2012). Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. Journal of the Science of Food and Agriculture, 92, 781–786.

    CAS  Article  Google Scholar 

  177. 177.

    Belokobylsky, A., Ginturi, E., Kuchava, N., Kirkesali, E., Mosulishvili, L., Frontasyeva, M., et al. (2004). Accumulation of selenium and chromium in the growth dynamics of Spirulina platensis. Journal of Radioanalytical and Nuclear Chemistry, 259(1), 65–68.

    CAS  Article  Google Scholar 

  178. 178.

    Feng, R. W., & Wei, C. Y. (2012). Antioxidative mechanisms on selenium accumulation in Pteris vittata L., a potential selenium phytoremediation plant. Plant, Soil and Environment, 58(3), 105–110.

    CAS  Google Scholar 

  179. 179.

    Fordyce, F.M. (2005). Selenium deficiency and toxicity in the environment. In Essentials of Medical Geology (Selinus, O. et al., eds), Elsevier pp. 373–415.

  180. 180.

    Elrashidi, M. A., et al. (1987). Chemical-equilibria of seleniumin soils—a theoretical development. Soil Science, 144, 141–152.

    CAS  Article  Google Scholar 

  181. 181.

    Anderson, J. (1993). Selenium interactions in sulfur metabolism. In Sulfur nutrition and assimilation in higher plants: regulatory agricultural and environmental aspects (De Kok, I.S. et al., eds), SPB Academic, pp. 49–60.

  182. 182.

    White, P. J., Bowen, H. C., Parmaguru, P., Fritz, M., Spracklen, W. P., Spiby, R. E., et al. (2004). Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. Journal of Experimental Botany, 55(404), 1927–1937.

    CAS  Article  Google Scholar 

  183. 183.

    Zhu, Y. G., Pilon-Smits, E. A., Zhao, F. J., Williams, P. N., & Meharg, A. A. (2009). Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends in Plant Science, 14(8), 436–442.

    CAS  Article  Google Scholar 

  184. 184.

    Arvy, M. P. (1993). Selenate and selenite uptake and translocation in bean-plants (Phaseolus vulgaris. Journal of Experimental Botany, 44, 1083–1087.

    CAS  Article  Google Scholar 

  185. 185.

    Li, H. F., McGrath, S. P., & Zhao, F. J. (2008). Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytologist, 178(1), 92–102.

    CAS  Article  Google Scholar 

  186. 186.

    Zhang, J. L., Flowers, T. J., & Wang, S. M. (2010). Mechanisms of sodium uptake by roots of higher plants. Plant and Soil, 326(1–2), 45–60.

    CAS  Article  Google Scholar 

  187. 187.

    Flowers, T. J., & Yeo, A. R. (1988). Ion relation of salt tolerance. In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman Scientific and Technical, Harlow, pp 392–413.

  188. 188.

    Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annual Botany, 91, 503–527.

    CAS  Article  Google Scholar 

  189. 189.

    Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179, 945–963.

    CAS  Article  Google Scholar 

  190. 190.

    Kronzucker, H. J., & Britto, D. T. (2011). Sodium transport in plants: a critical review. New Phytologist, 189(1), 54–81.

    CAS  Article  Google Scholar 

  191. 191.

    Amtmann, A., & Sanders, D. (1999). Mechanism of Na+ uptake by plant cells. Advances in Botanical Research, 29, 75–112.

    CAS  Article  Google Scholar 

  192. 192.

    Tyerman, S. D., & Skerrett, I. M. (1999). Root ion channels and salinity. Scientia Horticulturae, 78, 175–235.

    CAS  Article  Google Scholar 

  193. 193.

    White, P. J. (1999). The molecular mechanism of sodium influx to root cells. Trends in Plant Science, 4(7), 245–246.

    CAS  Article  Google Scholar 

  194. 194.

    Antosiewicz, D. M., & Hennig, J. (2004). Overexpression of LCT1 in tobacco enhances the protective action of calcium against cadmium toxicity. Environmental Pollution, 129, 237–245.

    CAS  Article  Google Scholar 

  195. 195.

    Liu, W. H., Schachtman, D. P., & Zhang, W. (2000). Partial deletion of a loop region in the high affinity K+ transporter HKT1 changes ionic permeability leading to increased salt tolerance. Journal of Biological Chemistry, 275, 27924–27932.

    CAS  Google Scholar 

  196. 196.

    Blumwald, E., Aharon, G. S., & Apse, M. P. (2000). Sodium transport in plant cells. Biochim Biophys Acta-Biomembranes, 1465, 140–151.

    CAS  Article  Google Scholar 

  197. 197.

    ?>Senn, M. E., Rubio, F., Banuelos, M. A., & Rodrıguez-Navarro, A. (2001). Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. Journal of Biological Chemistry, 30, 44563–44569.

    Article  CAS  Google Scholar 

  198. 198.

    Colmenero-Flores, J. M., Martinez, G., Gamba, G., Vazquez, N., Iglesias, D. J., Brumos, J., et al. (2007). Identification and functional characterization of cation-chloride cotransporters in plants. Plant Journal, 50, 278–292.

    CAS  Article  Google Scholar 

  199. 199.

    Hajiboland, R., Bahrami Rad, S., Barceló, J., & Poschenrieder, C. (2013). Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). Journal of Plant Nutrition and Soil Science, 176(4), 616–625.

    CAS  Article  Google Scholar 

  200. 200.

    Barcelo, J., & Poschenrieder, C. (2002). Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environmental and Experimental Botany, 48(1), 75–92.

    CAS  Article  Google Scholar 

  201. 201.

    Sade, H., Meriga, B., Surapu, V., Gadi, J., Sunita, M. S. L., Suravajhala, P., et al. (2016). Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. Biometals, 29(2), 187–210.

    CAS  Article  Google Scholar 

  202. 202.

    Poschenrieder, C., Gunsé, B., Corrales, I., & Barceló, J. (2008). A glance into aluminum toxicity and resistance in plants. Science of the Total Environment, 400(1), 356–368.

    CAS  Article  Google Scholar 

  203. 203.

    Konishi, S. (1992). Promotive effects of aluminium on tea plant growth. Japan Agricultural. Research Quarterly, 26, 26–26.

    CAS  Google Scholar 

  204. 204.

    Watanabe, T., & Osaki, M. (2002). Mechanisms of adaptation to high aluminum condition in native plant species growing in acid soils: a review. Communications in Soil Sciences and Plant Analysis, 33, 1247–1260.

    CAS  Article  Google Scholar 

  205. 205.

    Jansen, S., Watanabe, T., Caris, P., Geuten, K., Lens, F., Pyck, N., et al. (2004). The distribution and phylogeny of aluminium accumulating plants in the Ericales. Plant Biology, 6, 498–505.

    CAS  Article  Google Scholar 

  206. 206.

    Osawa, H., Ikeda, S., & Tange, T. (2013). The rapid accumulation of aluminum is ubiquitous in both the evergreen and deciduous leaves of Theaceae and Ternstroemiaceae plants over a wide pH range in acidic soils. Plant and Soil, 363(1–2), 49–59.

    CAS  Article  Google Scholar 

  207. 207.

    Hajiboland, R., Barceló, J., Poschenrieder, C., & Tolrà, R. (2013). Amelioration of iron toxicity: a mechanism for aluminum-induced growth stimulation in tea plants. Journal of Inorganic Biochemistry, 128, 183–187.

    CAS  Article  Google Scholar 

  208. 208.

    Kinraide, T. B. (1994). Use of a Gouy-Chapman-stern model for membrane-surface electrical potential to interpret some features of mineral rhizotoxicity. Plant Physiology, 106(4), 1583–1592.

    CAS  Article  Google Scholar 

  209. 209.

    Kidd, P. S., & Proctor, J. (2001). Why plants grow poorly on very acid soils: are ecologists missing the obvious? Journal of Experimental Botany, 52(357), 791–799.

    CAS  Google Scholar 

  210. 210.

    Ghanati, F., Morita, A., & Yokota, H. (2005). Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant and Soil, 276(1–2), 133–141.

    CAS  Article  Google Scholar 

  211. 211.

    Komeda, H., Kobayashi, M., & Shimizu, S. (1997). A novel transporter involved in cobalt uptake. Proceedings of the National Academy of Sciences, 94, 36–41.

  212. 212.

    Bakkaus, E., Gouget, B., Gallien, J. P., Khodja, H., Carrot, F., Morel, J. L., et al. (2005). Concentration and distribution of cobalt in higher plants: the use of micro-PIXE spectroscopy. Nuclear Instruments and Methods in Physic Research, 231, 350.

    CAS  Article  Google Scholar 

  213. 213.

    Sree, K. S., Keresztes, Á., Mueller-Roeber, B., Brandt, R., Eberius, M., Fischer, W., et al. (2015). Phytotoxicity of cobalt ions on the duckweed Lemna minor—morphology, ion uptake, and starch accumulation. Chemosphere, 131, 149–156.

    CAS  Article  Google Scholar 

  214. 214.

    Cai, Z., Kastell, A., Speiser, C., & Smetanska, I. (2013). Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability. Applied Biochemistry and Biotechnology, 171(2), 330–340.

    CAS  Article  Google Scholar 

  215. 215.

    Jayakumar, K., Jaleel, C. A., & Azooz, M. M. (2008). Impact of cobalt on germination and seedling growth of Eleusine coracana L. And Oryza sativa L. Under hydroponic culture. Global Journal of Molecular Sciences, 3(1), 18–20.

    CAS  Google Scholar 

  216. 216.

    Wei, W., Wang, Y., Wei, Z. G., Zhao, H. Y., Li, H. X., & Hu, F. (2009). Roles of organic acids and nitrate in the long-distance transport of cobalt in xylem saps of Alyssum murale and Trifolium subterraneum. Biological Trace Element Research, 131(2), 165–176.

    CAS  Article  Google Scholar 

  217. 217.

    Karovic, O., Tonazzini, I., Rebola, N., Edström, E., Lövdahl, C., Fredholm, B. B., et al. (2007). Toxic effects of cobalt in primary cultures of mouse astrocytes similarities with hypoxia and role of HIF-1α. Biochemical Pharmacology, 73, 694–708.

    CAS  Article  Google Scholar 

  218. 218.

    Palit, S., Sharma, A., & Talukder, G. (1994). Effects of cobalt on plants. Botanical Review, 60, 149–181.

    Article  Google Scholar 

  219. 219.

    Barysas, D., Cesniene, T., Balciuniene, L., Vaitkuniene, V., & Rancelis, V. (2002). Genotoxicity of Co2+ in plants and other organisms. Biologija, 2, 58–63.

    Google Scholar 

  220. 220.

    Kukier, U., Peters, C. A., Chaney, R. L., Angle, J. S., & Roseberg, R. J. (2004). The effect of pH on metal accumulation in two alyssum species. Journal of Environmental Quality, 33, 2090–2102.

    CAS  Article  Google Scholar 

  221. 221.

    Li, Z., McLaren, R. G., & Metherell, A. K. (2004). The availability of native and applied soil cobalt to ryegrass in relation to soil cobalt and manganese status and other soil properties. New Zealand Journal of Agricultural Research, 47, 33–43.

    CAS  Article  Google Scholar 

  222. 222.

    Li, H. F., Gray, C., Mico, C., Zhao, F. J., & McGrath, S. P. (2009). Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere, 75(7), 979–986.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ertugrul Filiz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vatansever, R., Ozyigit, I.I. & Filiz, E. Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: a Review. Appl Biochem Biotechnol 181, 464–482 (2017). https://doi.org/10.1007/s12010-016-2224-3

Download citation

Keywords

  • Toxicity
  • Deficiency
  • Micronutrient
  • Beneficial element
  • Broad range affinity