Skip to main content

Advertisement

Log in

Creating Economic Incentives for Waste Disposal in Developing Countries Using the MixAlco Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In rapidly growing developing countries, waste disposal is a major challenge. Current waste disposal methods (e.g., landfills and sewage treatment) incur costs and often are not employed; thus, wastes accumulate in the environment. To address this challenge, it is advantageous to create economic incentives to collect and process wastes. One approach is the MixAlco process, which uses methane-inhibited anaerobic fermentation to convert waste biomass into carboxylate salts, which are chemically converted to industrial chemicals and fuels. In this paper, humanure (raw human feces and urine) is explored as a possible nutrient source for fermentation. This work focuses on fermenting municipal solid waste (energy source) and humanure (nutrient source) in batch fermentations. Using the Continuum Particle Distribution Model (CPDM), the performance of continuous countercurrent fermentation was predicted at different volatile solid loading rates (VSLR) and liquid residence times (LRT). For a four-stage countercurrent fermentation system at VSLR = 4 g/(L∙day), LRT = 30 days, and solids concentration = 100 g/L liquid, the model predicts carboxylic acid concentration of 68 g/L and conversion of 78.5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: a global review of solid waste management. Washington DC: The World Bank. https://openknowledge.worldbank.org/handle/10986/17388.

    Google Scholar 

  2. Hartmann, H., & Ahring, B. K. (2006). Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview. Water Science and Technology, 53, 7–22.

    Article  CAS  Google Scholar 

  3. Holtzapple, M. T., Davison, R. R., Ross, M. K., Aldrett-Lee, S., Nagwani, M., Lee, C. M., Lee, C., Adelson, S., Kaar, W., Gaskin, D., Shirage, H., Chang, N. S., Chang, V. S., & Loescher, M. E. (1999). Biomass conversion to mixed alcohol fuels using the MixAlco process. Applied Biochemistry and Biotechnology, 77–9, 609–631.

    Article  Google Scholar 

  4. Holtzapple, M., Lonkar, S., & Granda, C. (2015). Producing biofuels via the carboxylate platform. Chemical Engineering Progress, 111, 52–57.

    Google Scholar 

  5. Pham, V., Holtzapple, M., & El-Halwagi, M. (2010). Techno-economic analysis of biomass to fuel conversion via the MixAlco process. Journal of Industrial Microbiology & Biotechnology, 37, 1157–1168.

    Article  CAS  Google Scholar 

  6. Pham, V., Holtzapple, M., El-Halwagi, M. M. (2013) Technoeconomic analysis of a lignocellulose-to-hydrocarbons process using a carboxylate platform. Integrated Biorefineries: Design, Analysis, and Optimization, 157–192.

  7. Fu, Z. H., & Holtzapple, M. T. (2010). Consolidated bioprocessing of sugarcane bagasse and chicken manure to ammonium carboxylates by a mixed culture of marine microorganisms. Bioresource Technology, 101, 2825–2836.

    Article  CAS  Google Scholar 

  8. Chan, W. N., & Holtzapple, M. T. (2003). Conversion of municipal solid wastes to carboxylic acids by thermophilic fermentation. Applied Biochemistry and Biotechnology, 111, 93–112.

    Article  CAS  Google Scholar 

  9. Thanakoses, P., Black, A. S., & Holtzapple, M. T. (2003). Fermentation of corn stover to carboxylic acids. Biotechnology and Bioengineering, 83, 191–200.

    Article  CAS  Google Scholar 

  10. Karak, T., Bhagat, R. M., & Bhattacharyya, P. (2012). Municipal solid waste generation, composition, and management: the world scenario. Critical Reviews in Environmental Science and Technology, 42, 1509–1630.

    Article  CAS  Google Scholar 

  11. Sharholy, M., Ahmad, K., Mahmood, G., & Trivedi, R. C. (2008). Municipal solid waste management in Indian cities—a review. Waste Management, 28, 459–467.

    Article  Google Scholar 

  12. Holtzapple, M. (2014). Novel mechanical pretreatment for lignocellulosic feedstocks. DOE Project# DE-EE0005005.000. College Station: Texas A&M University.

    Google Scholar 

  13. Ross, M. K. (1998) Production of acetic acid from waste biomass. PhD Thesis, Texas A&M University, College Station, Texas, USA.

  14. Fu, Z. H., & Holtzapple, M. T. (2010). Anaerobic mixed-culture fermentation of aqueous ammonia-treated sugarcane bagasse in consolidated bioprocessing. Biotechnology and Bioengineering, 106, 216–227.

    CAS  Google Scholar 

  15. Sluiter, A., & National Renewable Energy Laboratory (U.S.). (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples laboratory analytical procedure (LAP): issue date, 3/31/2008. Technical report NREL/TP-510-42621. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  16. Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences, 108(Suppl 1), 4516–4522.

    Article  CAS  Google Scholar 

  17. DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied Environmental Microbiology, 72, 5069–5072.

    Article  CAS  Google Scholar 

  18. Loescher, M. E. (1996) Volatile fatty acid fermentation of biomass and kinetic modeling using the CPDM method. PhD Thesis, Texas A&M University, College Station, Texas, USA.

  19. Fu, Z. (2007) Conversion of sugarcane bagasse to carboxylic acids under thermophilic conditions. PhD Thesis, Texas A&M University, College Station, Texas, USA.

  20. Hollister, E. B., Forrest, A. K., Wilkinson, H. H., Ebbole, D. J., Tringe, S. G., Malfatti, S. A., Holtzapple, M. T., Gentry, T. J. (2012) Mesophilic and thermophilic conditions select for unique but highly parallel microbial communities to perform carboxylate platform biomass conversion. Plos One, 7.

  21. Demain, A. L., Newcomb, M., & Wu, J. H. (2005). Cellulase, clostridia, and ethanol. Microbiology and Molecular Biology Reviews, 69, 124–154.

    Article  CAS  Google Scholar 

  22. Caldwell, D. R., & Newman, K. (1986). Pentose metabolism by Bacteroides ruminicola subsp. brevis strain B14. Current Microbiology, 14, 149–155.

    Article  CAS  Google Scholar 

  23. Lin, L., Kan, X., Yan, H., & Wang, D. (2012). Characterization of extracellular cellulose-degrading enzymes from Bacillus thuringiensis strains. Electronic Journal of Biotechnology, 15, 2.

    Article  Google Scholar 

  24. Edwards, J. L., Smith, D. L., Connolly, J., McDonald, J. E., Cox, M. J., Joint, I., Edwards, C., & McCarthy, A. J. (2010). Identification of carbohydrate metabolism genes in the metagenome of a marine biofilm community shown to be dominated by Gammaproteobacteria and Bacteroidetes. Genes, 1, 371–384.

    Article  Google Scholar 

  25. Smith, A. D., & Holtzapple, M. T. (2011). Investigation of the optimal carbon-nitrogen ratio and carbohydrate-nutrient blend for mixed-acid batch fermentations. Bioresource Technology, 102, 5976–5987.

    Article  CAS  Google Scholar 

  26. Rughoonundun, H., Mohee, R., & Holtzapple, M. T. (2012). Influence of carbon-to-nitrogen ratio on the mixed-acid fermentation of wastewater sludge and pretreated bagasse. Bioresource Technology, 112, 91–97.

    Article  CAS  Google Scholar 

  27. Fu, Z. H., & Holtzapple, M. T. (2010). Fermentation of sugarcane bagasse and chicken manure to calcium carboxylates under thermophilic conditions. Applied Biochemistry and Biotechnology, 162, 561–578.

    Article  CAS  Google Scholar 

  28. Fu, Z. H., & Holtzapple, M. T. (2011). Anaerobic thermophilic fermentation for carboxylic acid production from in-storage air-lime-treated sugarcane bagasse. Applied Microbiology and Biotechnology, 90, 1669–1679.

    Article  CAS  Google Scholar 

  29. Darvekar, P., & Holtzapple, M. T. (2016). Assessment of shock pretreatment of corn stover using the carboxylate platform. Applied Biochemistry and Biotechnology, 178, 1081–1094.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support (Project #OPP1044651) from the Bill and Melinda Gates Foundation’s Global Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Lonkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lonkar, S., Fu, Z., Wales, M. et al. Creating Economic Incentives for Waste Disposal in Developing Countries Using the MixAlco Process. Appl Biochem Biotechnol 181, 294–308 (2017). https://doi.org/10.1007/s12010-016-2213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2213-6

Keywords

Navigation