Skip to main content
Log in

Improvement and Characterization in Enzymatic Hydrolysis of Regenerated Wheat Straw Dissolved by LiCl/DMAc Solvent System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lithium chloride (LiCl)/N,N-dimethylacetamide (DMAc) solvent system was used to dissolve native and pretreated wheat straw materials in order to promote the enzymatic hydrolysis process. The dissolution ratio of wheat straw in LiCl/DMAc solvent system increased when dilute sulfuric acid or ethanol-sulfuric acid mixture pretreatment was conducted before dissolution. The materials regenerated from LiCl/DMAc solution exhibited obvious changes in structure and morphology, as revealed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The cellulose and xylan digestibilities of regenerated materials were improved obviously. The cellulose digestibilities of materials regenerated from native and pretreated wheat straw by dilute sulfuric acid and ethanol-sulfuric acid mixture were 61.8, 81.2, and 84.4 %, respectively, with 25 FPU of cellulase and 187 IU of xylanase after 96 h. These values were significantly higher than the digestibilities of 0, 33.2, and 57.5 % obtained from corresponding materials before dissolution. Dissolution treatment of wheat straw by LiCl/DMAc solvent system provides an alternative method for efficient enzymatic hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xie, H., Liu, W., & Zhao, Z.K. (2012). Lignocellulose pretreatment by ionic liquids: a promising start point for bio-energy production. Biomass Conversion (pp. 123–144). Berlin: Springer.

  2. Conde-Mejía, C., Jiménez-Gutiérrez, A., & El-Halwagi, M. M. (2013). Assessment of combinations between pretreatment and conversion configurations for bioethanol production. ACS Sustainable Chemistry & Engineering, 1, 956–965.

    Article  Google Scholar 

  3. Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels, 20, 848–889.

    Article  CAS  Google Scholar 

  4. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48, 3713–3729.

    Article  CAS  Google Scholar 

  5. Yang, Y., Sharma-Shivappa, R., Burns, J. C., & Cheng, J. J. (2009). Dilute ccid pretreatment of oven-dried switchgrass germplasms for bioethanol production. Energy & Fuels, 23, 3759–3766.

    Article  CAS  Google Scholar 

  6. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  7. Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93.

    Article  CAS  Google Scholar 

  8. Hii, K. L., Yeap, S. P., & Mashitah, M. D. (2012). Pretreatment of pressed pericarp fibers (PPF) using alcohols as solvent to increase the accessibility of cellulose for cellulase production. Journal of the Korean Society for Applied Biological Chemistry, 55, 507–514.

    Article  CAS  Google Scholar 

  9. Huijgen, W. J., Smit, A. T., de Wild, P. J., & den Uil, H. (2012). Fractionation of wheat straw by prehydrolysis, organosolv delignification and enzymatic hydrolysis for production of sugars and lignin. Bioresource Technology, 114, 389–398.

    Article  CAS  Google Scholar 

  10. Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., Ehara, K., Xie, D., Lam, D., & Saddler, J. (2006). Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnology and Bioengineering, 94, 851–861.

    Article  CAS  Google Scholar 

  11. Tian, X. F., Fang, Z., Jiang, D., & Sun, X. Y. (2011). Pretreatment of microcrystalline cellulose in organic electrolyte solutions for enzymatic hydrolysis. Biotechnology for Biofuels, 4, 53.

    Article  CAS  Google Scholar 

  12. da Costa Lopes, A. M., João, K. G., Morais, A. R. C., Bogel-Łukasik, E., & Bogel-Łukasik, R. (2013). Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustainable Chemical Processes, 1, 1–31.

    Article  Google Scholar 

  13. Rosenau, T., Hofinger, A., Potthast, A., & Kosma, P. (2003). On the conformation of the cellulose solvent N-methylmorpholine-N-oxide (NMMO) in solution. Polymer, 44, 6153–6158.

    Article  CAS  Google Scholar 

  14. Cai, J., & Zhang, L. (2005). Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromolecular Bioscience, 5, 539–548.

    Article  CAS  Google Scholar 

  15. Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 124, 4974–4975.

    Article  CAS  Google Scholar 

  16. Chen, J. H., Guan, Y., Wang, K., Xu, F., & Sun, R. C. (2015). Regenerated cellulose fibers prepared from wheat straw with different solvents. Macromolecular Materials and Engineering, 300, 793–801.

    Article  CAS  Google Scholar 

  17. Dupont, A. L. (2003). Cellulose in lithium chloride/N, N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer, 44, 4117–4126.

    Article  CAS  Google Scholar 

  18. Obradovic, J., Wondraczek, H., Fardim, P., Lassila, L., & Navard, P. (2014). Preparation of three-dimensional cellulose objects previously swollen in a DMAc/LiCl solvent system. Cellulose, 21, 4029–4038.

    Article  Google Scholar 

  19. Segal, L., Creely, J., Martin, A., & Conrad, C. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29, 786–794.

    Article  CAS  Google Scholar 

  20. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., & Sluiter, J. (2012). 2010, Jul. p. 17. Report no.TP-510-42618. In Determination of structural carbohydrates and lignin in biomass. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  21. Lin, X., Xiong, L., Qi, G., Shi, S., Huang, C., Chen, X., & Chen, X. (2015). Using butanol fermentation wastewater for biobutanol production after removal of inhibitory compounds by micro/mesoporous hyper-cross-linked polymeric adsorbent. ACS Sustainable Chemistry & Engineering, 3, 702–709.

    Article  CAS  Google Scholar 

  22. Zabihi, S., Alinia, R., Esmaeilzadeh, F., & Kalajahi, J. F. (2010). Pretreatment of wheat straw using steam, steam/acetic acid and steam/ethanol and its enzymatic hydrolysis for sugar production. Biosystems Engineering, 105, 288–297.

    Article  Google Scholar 

  23. Yu, X., Zheng, Y., Dorgan, K. M., & Chen, S. (2011). Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresource Technololgy, 102, 6134–6140.

    Article  CAS  Google Scholar 

  24. Zhang, K., Pei, Z., & Wang, D. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresource Technolology, 199, 21–33.

    Article  CAS  Google Scholar 

  25. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., & Nilvebrant, N. O. (1999). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology, 24, 151–159.

    Article  CAS  Google Scholar 

  26. Wang, S., Zhang, Y., Dong, H., Mao, S., Zhu, Y., Wang, R., Luan, G., & Li, Y. (2011). Formic acid triggers the “acid crash” of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Applied and Environmental Microbiology, 77, 1674–1680.

    Article  CAS  Google Scholar 

  27. Zhao, X., Cheng, K., & Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82, 815–827.

    Article  CAS  Google Scholar 

  28. Guo, G. L., Hsu, D. C., Chen, W. H., Chen, W. H., & Hwang, W. S. (2009). Characterization of enzymatic saccharification for acid-pretreated lignocellulosic materials with different lignin composition. Enzyme and Microbial Technology, 45, 80–87.

    Article  CAS  Google Scholar 

  29. French, A. D. (2014). Idealized powder diffraction patterns for cellulose polymorphs. Cellulose, 21, 885–896.

    Article  CAS  Google Scholar 

  30. Wang, Q., Hu, J., Shen, F., Mei, Z., Yang, G., Zhang, Y., Hu, Y., Zhang, J., & Deng, S. (2016). Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): investigations on pretreatment conditions and structure changes. Bioresource Technology, 199, 245–257.

    Article  CAS  Google Scholar 

  31. Johar, N., Ahmad, I., & Dufresne, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37, 93–99.

    Article  CAS  Google Scholar 

  32. Faix, O., Argyropoulos, D. S., Robert, D., & Neirinck, V. (1994). Determination of hydroxyl groups in lignins evaluation of 1H-, 13C-, 31P-NMR, FTIR and wet chemical methods. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 48, 387–394.

    CAS  Google Scholar 

  33. Pouteau, C., Dole, P., Cathala, B., Averousa, L., & Boquillonb, N. (2003). Antioxidant properties of lignin in polypropylene. Polymer Degradation and Stability, 81, 9–18.

    Article  CAS  Google Scholar 

  34. Ang, T. N., Ngoh, G. C., Chua, A. S. M., & Lee, M. G. (2012). Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses. Biotechnology for Biofuels, 5, 1.

    Article  Google Scholar 

  35. Wada, M., Ike, M., & Tokuyasu, K. (2010). Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polymer Degradation and Stability, 95, 543–548.

    Article  CAS  Google Scholar 

  36. French, A. D., & Cintrón, M. S. (2013). Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose, 20, 583–588.

    Article  CAS  Google Scholar 

  37. Lee, H. J., Sanyoto, B., Choi, J. W., Ha, J. M., Suh, D. J., & Lee, K. Y. (2013). Effects of lignin on the ionic-liquid assisted catalytic hydrolysis of cellulose: chemical inhibition by lignin. Cellulose, 20, 2349–2358.

    Article  CAS  Google Scholar 

  38. Sathitsuksanoh, N., Zhu, Z., Wi, S., & Zhang, Y. H. (2011). Cellulose solvent-based biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass. Biotechnology and Bioengineering, 108, 521–529.

    Article  CAS  Google Scholar 

  39. Yuan, T. Q., Wang, W., Zhang, L. M., Xu, F., & Sun, R. C. (2013). Reconstitution of cellulose and lignin after [C2mim][OAc] pretreatment and its relation to enzymatic hydrolysis. Biotechnology and Bioengineering, 110, 729–736.

    Article  CAS  Google Scholar 

  40. Converse, A. O., Ooshima, H., & Burns, D. S. (1990). Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Applied Biochemistry and Biotechnology, 24, 67–73.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Science and Technology Project of Huaian (HAS2015035), the financial support from the Project of Jiangsu Province Science and Technology (BE2013083, BE2014101, BE2016706), Natural Science Foundation of Guangdong Province, China (2016A030310124), the Project of National Natural Science Foundation of China (51303181, 51508547), project of Guangzhou Science and Technology (201610010014), Youth Innovation Promotion Association CAS (2015290), the Science and Technology Planning Project of Guangdong Province, China (2016A010104009, 2016A010105016), and the Foundation of Director of Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (y407r41001). We thank Dr. M. Asraful Alam at GIEC-CAS for helpful discussions and language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinde Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, G., Xiong, L., Wang, B. et al. Improvement and Characterization in Enzymatic Hydrolysis of Regenerated Wheat Straw Dissolved by LiCl/DMAc Solvent System. Appl Biochem Biotechnol 181, 177–191 (2017). https://doi.org/10.1007/s12010-016-2206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2206-5

Keywords

Navigation