Skip to main content
Log in

Influence of Hydraulic Retention Time and Reactor Configuration During Fermentation of Diluted Chicken Manure

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, single-stage and two-phase semi-continuous thermophilic anaerobic reactors fed with diluted (3 % total solids (TS) and 1.8 % volatile solids (VS)) chicken manure at three different hydraulic retention times (HRTs) were compared interms of biogas production rate, methane content of the produced biogas, and VS and TS removal. Along the study, HRTs of 16, 12, and 8 days were implemented to the single-stage and the two-phase systems. It was observed that the single-stage anaerobic system was superior to the two-phase anaerobic system according to their biogas production rates (517 vs. 356, 551 vs. 359, 459 vs. 386 (mL/g VSfeed)) at all HRTs. On the other hand, methane content of the biogas produced was higher in the two-phase system compared to the single-stage system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99, 7928–7940.

    Article  CAS  Google Scholar 

  2. Bond, T., & Templeton, M. R. (2011). History and future of domestic biogas plants in the developing world. Energy for Sustainable Development, 15, 347–354.

    Article  Google Scholar 

  3. Kelleher, B. P., Leahy, J. J., Henihan, A. M., O’Dwyer, T. F., Sutton, D., & Leahy, M. J. (2002). Advances in poultry litter disposal technology—a review. Bioresource Technology, 83, 27–36.

    Article  CAS  Google Scholar 

  4. Joseph, P., Tretsiakova-McNally, S., & Siobhan McKenna, S. (2012). Characterization of cellulosic wastes and gasification products from chicken farms. Waste Management, 32, 701–709.

    Article  CAS  Google Scholar 

  5. Bujoczek, G., Oleszkiewicz, J., Sparling, R., & Cenkowski, S. (2000). High solid anaerobic digestion of chicken manure. Journal of Agricultural Engineering Research, 76, 51–60.

    Article  Google Scholar 

  6. Niu, Q., Qiao, W., Qiang, H., Hojo, T., & Li, Y. (2013). Mesophilic methane fermentation of chicken manure at a wide range of ammonia concentration: stability, inhibition and recovery. Bioresource Technology, 137, 358–367.

    Article  CAS  Google Scholar 

  7. Dalkılıc, K., & Ugurlu, A. (2015). Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system. Journal of Bioscience and Bioengineering, 120(3), 315–322.

    Article  Google Scholar 

  8. Abouelenien, F., Fujiwara, W., Namba, Y., Namba, Y., Kosseva, M., Nishio, N., & Nakashimada, Y. (2010). Improved methane fermentation of chicken manure via ammonia by biogas recycle. Bioresource Technology, 101, 6368–6373.

    Article  CAS  Google Scholar 

  9. Wang, X., Yang, G., Feng, Y., Ren, G., & Han, X. (2012). Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresource Technology, 120, 78–83.

    Article  CAS  Google Scholar 

  10. Niu, Q., Qiao, W., Qiang, H., & Li, Y. (2013). Microbial community shifts and biogas conversion computation during steady, inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia. Bioresource Technology, 146, 223–233.

    Article  CAS  Google Scholar 

  11. Yetilmezsoy, K., & Sakar, S. (2008). Development of empirical models for performance evaluation of UASB reactors treating poultry manure wastewater under different operational conditions. Journal of Hazardous Materials, 153, 532–543.

    Article  CAS  Google Scholar 

  12. Nasr, N., Elbeshbishy, E., Hafez, H., Nakhla, G., & El Naggar, M. H. (2012). Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage. Bioresource Technology, 111, 122–126.

    Article  CAS  Google Scholar 

  13. Bae, J., Shin, C., Lee, E., Kim, J., & McCarty, P. L. (2014). Anaerobic treatment of low-strength wastewater: a comparison between single and staged anaerobic fluidized bed membrane bioreactors. Bioresource Technology, 165, 75–80.

    Article  CAS  Google Scholar 

  14. Massanet-Nicolau, J., Dinsdale, R., Guwy, A., & Shipley, G. (2013). Use of real time gas production data for more accurate comparison of continuous single-stage and two-stage fermentation. Bioresource Technology, 129, 561–567.

    Article  CAS  Google Scholar 

  15. Ganesh, R., Torrijos, M., Sousbie, P., Lugardon, A., Steyer, J. P., & Delgenes, J. P. (2014). Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance. Waste Management, 34, 875–885.

    Article  CAS  Google Scholar 

  16. Merlino, G., Rizzi, A., Andrea Schievano, A., Tenca, A., Scaglia, B., Oberti, R., Adani, F., & Daffonchio, D. (2013). Microbial community structure and dynamics in two-stage vs single-stage thermophilic anaerobic digestion of mixed swine slurry and market biowaste. Water Research, 47, 1983–1995.

    Article  CAS  Google Scholar 

  17. Holman, J. P. (1995). Experimental methods for engineers (6th ed.pp. 539–543). New Delhi: Tata McGraw-Hill.

    Google Scholar 

  18. APHA, AWWA, WPCF. (2005). Standard methods for examination water and wastewater, 17. Edition, Washington DC.

  19. Elbeshbishy, E., & Nakhla, G. (2011). Comparative study of the effect of ultrasonication on the anaerobic biodegradability of food waste in single and two-stage systems. Bioresource Technology, 102, 6449–6457.

    Article  CAS  Google Scholar 

  20. Diamantis, V. I., & Aivasidis, A. (2007). Comparison of single- and two-stage UASB reactors used for anaerobic treatment of synthetic fruit wastewater. Enzyme and Microbial Technology, 42, 6–10.

    Article  CAS  Google Scholar 

  21. Maspolim, Y., Zhou, Y., Guo, C., Xiao, K., & Jern Ng, W. (2015). Comparison of single-stage and two-phase anaerobic sludge digestion systems—performance and microbial community dynamics. Chemosphere, 140, 54–62.

    Article  CAS  Google Scholar 

  22. Lim, J. W., Chen, C.-L., Ho, I. J. R., & Wang, J. Y. (2013). Study of microbial community and biodegradation efficiency for single and two-phase anaerobic co-digestion of brown water and food waste. Bioresource Technology, 147, 193–201.

    Article  CAS  Google Scholar 

  23. Shahriari, H., Warith, M., Hamoda, M., & Kennedy, K. (2013). Evaluation of single vs. staged mesophilic anaerobic digestion of kitchen waste with and without microwave pretreatment. Journal of Environmental Management, 125, 74–84.

    Article  CAS  Google Scholar 

  24. Zhang, Q., Zhu, X., Kong, L., Yuan, G., Zhai, Z., Liu, H., & Guo, X. (2013). Comparative assessment of the methanogenic steps of single and two-stage processes without or with a previous hydrolysis of cassava distillage. Bioresource Technology, 147, 1–6.

    Article  CAS  Google Scholar 

  25. Erden, G., & Filibeli, A. (2010). Improving anaerobic biodegradability of biological sludges by Fenton pre-treatment: effects on single stage and two-stage anaerobic digestion. Desalination, 251, 58–63.

    Article  CAS  Google Scholar 

  26. Park, Y. J., Hong, F., Cheon, J. H., Hidaka, T., & Tsuno, H. (2008). Comparison of thermophilic anaerobic digestion characteristics between single-phase and two-phase systems for kitchen garbage treatment. Journal of Bioscience and Bioengineering, 105(1), 48–54.

    Article  CAS  Google Scholar 

  27. Meng, Y., Jost, C., Mumme, J., Wang, K., & Linke, B. (2016). An analysis of single and two stage, mesophilic and thermophilic high rate systems for anaerobic digestion of corn stalk. Chemical Engineering Journal, 288, 79–86.

    Article  CAS  Google Scholar 

  28. Fernández-Rodríguez, J., Pérez, M., & Romero, L. I. (2016). Semicontinuous temperature-phased anaerobic digestion (TPAD) of organic fraction of municipal solid waste (OFMSW) comparison with single-stage processes. Chemical Engineering Journal, 285, 409–416.

    Article  Google Scholar 

  29. Massanet-Nicolau, J., Dinsdale, R., Guwy, A., & Shipley, G. (2015). Utilising biohydrogen to increase methane production, energy yields and process efficiency via two stage anaerobic digestion of grass. Bioresource Technology, 189, 379–383.

    Article  CAS  Google Scholar 

  30. Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., Liu, Y., Ma, J., Yu, L., & Li, X. (2013). Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase. Bioresource Technology, 144, 80–85.

    Article  CAS  Google Scholar 

  31. Leite, W. R. M., Gottardo, M., Pavan, P., Filho, P. B., & Bolzonella, D. (2016). Performance and energy aspects of single and two phase thermophilic anaerobic digestion of waste activated sludge. Renewable Energy, 86, 1324–1331.

    Article  CAS  Google Scholar 

  32. Wu, L., Qin, Y., Hojo, T., & Li, Y. (2015). Upgrading of anaerobic digestion of waste activated sludge by temperature-phased process with recycle. Energy, 87, 381–389.

    Article  CAS  Google Scholar 

  33. Wu, L. J., Kobayashi, T., Li, Y. Y., & Xu, K. Q. (2015). Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste. Energy Conversion and Management, 106, 1174–1182.

    Article  CAS  Google Scholar 

  34. Wu, L. J., Higashimori, A., Qin, Y., Hojo, Y., Kubota, K., & Li, Y. Y. (2016). Upgrading of mesophilic anaerobic digestion of waste activated sludge by thermophilic pre-fermentation and recycle: process performance and microbial community analysis. Fuel, 169, 7–14.

    Article  CAS  Google Scholar 

  35. Ariunbaatar, J., Di Perta, E. S., Panico, A., Frunzo, L., Esposito, G., Lens, P. N. L., & Pirozzi, F. (2015). Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste. Waste Management, 38, 388–398.

    Article  CAS  Google Scholar 

  36. Arreola-Vargas, J., Flores-Larios, A., Gonzalez-Alvarez, V., Corona-Gonzalez, R. I., & Mendez-Acosta, H. O. (2015). Single and two-stage anaerobic digestion for hydrogen and methane production from acid and enzymatic hydrolysates of Agave tequilana bagasse. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2015.11.016.

    Google Scholar 

  37. Lindner, J., Zielonka, S., Oechsner, H., & Lemmer, A. (2016). Is the continuous two-stage anaerobic digestion process well suited for all substrates? Bioresource Technology, 200, 470–476.

    Article  CAS  Google Scholar 

  38. Weiland, P. (2010). Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85, 849–860.

    Article  CAS  Google Scholar 

  39. Font-Palma, C. (2012). Characterisation, kinetics and modelling of gasification of poultry manure and litter: an overview. Energy Conversion and Management, 53, 92–98.

    Article  CAS  Google Scholar 

  40. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99, 4044–4064.

    Article  CAS  Google Scholar 

  41. Panda, S. K., Mishra, S. S., Kayitesi, E., & Ray, R. C. (2016). Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: biotechnology and scopes. Environmental Research, 146, 161–172.

    Article  CAS  Google Scholar 

  42. Scano, E. A., Asquer, C., Pistis, A., Ortu, L., Demontis, V., & Cocco, D. (2014). Biogas from anaerobic digestion of fruit and vegetable wastes: experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Conversion and Management, 77, 22–30.

    Article  CAS  Google Scholar 

  43. Niu, Q., Takemura, Y., Kubota, K., & Li, Y. Y. (2015). Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: microbial community dynamics and process resilience. Waste Management, 43, 114–122.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenan Dalkılıç.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalkılıç, K., Uğurlu, A. Influence of Hydraulic Retention Time and Reactor Configuration During Fermentation of Diluted Chicken Manure. Appl Biochem Biotechnol 181, 157–176 (2017). https://doi.org/10.1007/s12010-016-2205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2205-6

Keywords

Navigation