Skip to main content
Log in

Modulating Mobility: a Paradigm for Protein Engineering?

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Proteins are highly mobile structures. In addition to gross conformational changes occurring on, for example, ligand binding, they are also subject to constant thermal motion. The mobility of a protein varies through its structure and can be modulated by ligand binding and other events. It is becoming increasingly clear that this mobility plays an important role in key functions of proteins including catalysis, allostery, cooperativity, and regulation. Thus, in addition to an optimum structure, proteins most likely also require an optimal dynamic state. Alteration of this dynamic state through protein engineering will affect protein function. A dramatic example of this is seen in some inherited metabolic diseases where alternation of residues distant from the active site affects the mobility of the protein and impairs function. We postulate that using molecular dynamics simulations, experimental data or a combination of the two, it should be possible to engineer the mobility of active sites. This may be useful in, for example, increasing the promiscuity of enzymes. Thus, a paradigm for protein engineering is suggested in which the mobility of the active site is rationally modified. This might be combined with more “traditional” approaches such as altering functional groups in the active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett Jr., W. S., & Steitz, T. A. (1978). Glucose-induced conformational change in yeast hexokinase. Proceedings of the National Academy of Sciences of the United States of America, 75, 4848–4852.

    Article  CAS  Google Scholar 

  2. Bennett Jr., W. S., & Steitz, T. A. (1980). Structure of a complex between yeast hexokinase A and glucose. I. Structure determination and refinement at 3.5 Å resolution. Journal of Molecular Biology, 140, 183–209.

    Article  CAS  Google Scholar 

  3. Bennett Jr., W. S., & Steitz, T. A. (1980). Structure of a complex between yeast hexokinase A and glucose. II. Detailed comparisons of conformation and active site configuration with the native hexokinase B monomer and dimer. Journal of Molecular Biology, 140, 211–230.

    Article  CAS  Google Scholar 

  4. Benson, N. C., & Daggett, V. (2012). A comparison of multiscale methods for the analysis of molecular dynamics simulations. The Journal of Physical Chemistry. B, 116, 8722–8731.

    Article  CAS  Google Scholar 

  5. Berman, H. M., Coimbatore Narayanan, B., Di Costanzo, L., Dutta, S., Ghosh, S., Hudson, B. P., Lawson, C. L., Peisach, E., Prlic, A., Rose, P. W., Shao, C., Yang, H., Young, J., & Zardecki, C. (2013). Trendspotting in the protein data bank. FEBS Letters, 587, 1036–1045.

    Article  CAS  Google Scholar 

  6. Brannigan, J. A., & Wilkinson, A. J. (2002). Protein engineering 20 years on. Nature Reviews. Molecular Cell Biology, 3, 964–970.

    Article  CAS  Google Scholar 

  7. Browne, C., & Timson, D. J. (2015). In Silico prediction of the effects of mutations in the human mevalonate kinase gene: towards a predictive framework for mevalonate kinase deficiency. Annals of Human Genetics, 79, 451–459.

    Article  CAS  Google Scholar 

  8. Chen, J., Yu, H., Liu, C., Liu, J., & Shen, Z. (2012). Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions. Journal of Biotechnology, 164, 354–362.

    Article  CAS  Google Scholar 

  9. Cole, R., & Loria, J. P. (2002). Evidence for flexibility in the function of ribonuclease A. Biochemistry, 41, 6072–6081.

    Article  CAS  Google Scholar 

  10. Debye, P. (1913). Interferenz von Röntgenstrahlen und Wärmebewegung. Annalen der Physik, 348, 49–92.

    Article  Google Scholar 

  11. Doucet, N., Watt, E. D., & Loria, J. P. (2009). The flexibility of a distant loop modulates active site motion and product release in ribonuclease A. Biochemistry, 48, 7160–7168.

    Article  CAS  Google Scholar 

  12. Eisenmesser, E. Z., Millet, O., Labeikovsky, W., Korzhnev, D. M., Wolf-Watz, M., Bosco, D. A., Skalicky, J. J., Kay, L. E., & Kern, D. (2005). Intrinsic dynamics of an enzyme underlies catalysis. Nature, 438, 117–121.

    Article  CAS  Google Scholar 

  13. Ferrell Jr., J. E. (2009). Q&A: cooperativity. Journal of Biology, 8, 53.

    Article  Google Scholar 

  14. Fersht, A. (1999). Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding (3rd ed.). New York: Macmillan.

    Google Scholar 

  15. Glowacki, D. R., Harvey, J. N., & Mulholland, A. J. (2012). Taking Ockham's razor to enzyme dynamics and catalysis. Nature Chemistry, 4, 169–176.

    Article  CAS  Google Scholar 

  16. Goodey, N. M., & Benkovic, S. J. (2008). Allosteric regulation and catalysis emerge via a common route. Nature Chemical Biology, 4, 474–482.

    Article  CAS  Google Scholar 

  17. Henzler-Wildman, K. A., Thai, V., Lei, M., Ott, M., Wolf-Watz, M., Fenn, T., Pozharski, E., Wilson, M. A., Petsko, G. A., Karplus, M., Hubner, C. G., & Kern, D. (2007). Intrinsic motions along an enzymatic reaction trajectory. Nature, 450, 838–844.

    Article  CAS  Google Scholar 

  18. Hnizda, A., Majtan, T., Liu, L., Pey, A. L., Carpenter, J. F., Kodicek, M., Kozich, V., & Kraus, J. P. (2012). Conformational properties of nine purified cystathionine beta-synthase mutants. Biochemistry, 51, 4755–4763.

    Article  CAS  Google Scholar 

  19. Hoffmeister, D., & Thorson, J. S. (2004). Mechanistic implications of Escherichia coli galactokinase structure-based engineering. Chembiochem, 5, 989–992.

    Article  CAS  Google Scholar 

  20. Hoffmeister, D., Yang, J., Liu, L., & Thorson, J. S. (2003). Creation of the first anomeric D/L-sugar kinase by means of directed evolution. Proceedings of the National Academy of Sciences of the United States of America, 100, 13184–13189.

    Article  CAS  Google Scholar 

  21. Huang, F., & Nau, W. M. (2003). A conformational flexibility scale for amino acids in peptides. Angewandte Chemie (International Ed. in English), 42, 2269–2272.

    Article  CAS  Google Scholar 

  22. Kamerlin, S. C., & Warshel, A. (2010). At the dawn of the 21st century: is dynamics the missing link for understanding enzyme catalysis? Proteins, 78, 1339–1375.

    CAS  Google Scholar 

  23. Kitao, A., Hirata, F., & Gō, N. (1991). The effects of solvent on the conformation and the collective motions of protein: normal mode analysis and molecular dynamics simulations of melittin in water and in vacuum. Chemical Physics, 158, 447–472.

    Article  CAS  Google Scholar 

  24. Kristiansson, H., & Timson, D. J. (2011). Increased promiscuity of human galactokinase following alteration of a single amino acid residue distant from the active site. Chembiochem : a European journal of chemical biology, 12, 2081–2087.

    Article  CAS  Google Scholar 

  25. Kull, F. J., & Endow, S. A. (2013). Force generation by kinesin and myosin cytoskeletal motor proteins. Journal of Cell Science, 126, 9–19.

    Article  CAS  Google Scholar 

  26. Levy, R. M., Srinivasan, A. R., Olson, W. K., & McCammon, J. A. (1984). Quasi-harmonic method for studying very low frequency modes in proteins. Biopolymers, 23, 1099–1112.

    Article  CAS  Google Scholar 

  27. Ma, J., & Karplus, M. (1998). The allosteric mechanism of the chaperonin GroEL: a dynamic analysis. Proceedings of the National Academy of Sciences of the United States of America, 95, 8502–8507.

    Article  CAS  Google Scholar 

  28. Maltsev, A. S., & Oswald, R. E. (2010). Hydrophobic side chain dynamics of a glutamate receptor ligand binding domain. The Journal of Biological Chemistry, 285, 10154–10162.

    Article  CAS  Google Scholar 

  29. Marques, O., & Sanejouand, Y. H. (1995). Hinge-bending motion in citrate synthase arising from normal mode calculations. Proteins, 23, 557–560.

    Article  CAS  Google Scholar 

  30. McAuley, M., Kristiansson, H., Huang, M., Pey, A. L., & Timson, D. J. (2015). Galactokinase promiscuity: a question of flexibility? Biochem.Soc.Trans., 44, 116–122.

    Article  Google Scholar 

  31. McCorvie, T. J., Gleason, T. J., Fridovich-Keil, J. L. and Timson, D. J. (2013) Misfolding of galactose 1-phosphate uridylyltransferase can result in type I galactosemia. Biochimica et Biophysica Acta, 1832, 1279–1293.

  32. McDonald, R. C., Steitz, T. A., & Engelman, D. M. (1979). Yeast hexokinase in solution exhibits a large conformational change upon binding glucose or glucose 6-phosphate. Biochemistry, 18, 338–342.

    Article  CAS  Google Scholar 

  33. Motlagh, H. N., Wrabl, J. O., Li, J., & Hilser, V. J. (2014). The ensemble nature of allostery. Nature, 508, 331–339.

    Article  CAS  Google Scholar 

  34. Otsuka, J., & Kunisawa, T. (1978). Conformational change and cooperative ligand binding in hemoglobin. Advances in Biophysics, 11, 53–92.

    CAS  Google Scholar 

  35. Park, H. J., Joo, J. C., Park, K., Kim, Y. H., & Yoo, Y. J. (2013). Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent. Journal of Biotechnology, 163, 346–352.

    Article  CAS  Google Scholar 

  36. Park, H. J., Park, K., Kim, Y. H., & Yoo, Y. J. (2014). Computational approach for designing thermostable Candida antarctica lipase B by molecular dynamics simulation. Journal of Biotechnology, 192(Pt A), 66–70.

    Article  CAS  Google Scholar 

  37. Pey, A. L. (2013). The interplay between protein stability and dynamics in conformational diseases: the case of hPGK1 deficiency. Biochimica et Biophysica Acta, 1834, 2502–2511.

    Article  CAS  Google Scholar 

  38. Pey, A. L., Maggi, M., & Valentini, G. (2014). Insights into human phosphoglycerate kinase 1 deficiency as a conformational disease from biochemical, biophysical, and in vitro expression analyses. Journal of Inherited Metabolic Disease, 37, 909–916.

    Article  CAS  Google Scholar 

  39. Quin, M. B., & Schmidt-Dannert, C. (2011). Engineering of biocatalysts - from evolution to creation. ACS Catalysis, 1, 1017–1021.

    Article  CAS  Google Scholar 

  40. Roux, K. H., Strelets, L., Brekke, O. H., Sandlie, I., & Michaelsen, T. E. (1998). Comparisons of the ability of human IgG3 hinge mutants, IgM, IgE, and IgA2, to form small immune complexes: a role for flexibility and geometry. Journal of Immunology, 161, 4083–4090.

    CAS  Google Scholar 

  41. Schnell, J. R., Dyson, H. J., & Wright, P. E. (2004). Effect of cofactor binding and loop conformation on side chain methyl dynamics in dihydrofolate reductase. Biochemistry, 43, 374–383.

    Article  CAS  Google Scholar 

  42. Schnell, J. R., Dyson, H. J., & Wright, P. E. (2004). Structure, dynamics, and catalytic function of dihydrofolate reductase. Annual Review of Biophysics and Biomolecular Structure, 33, 119–140.

    Article  CAS  Google Scholar 

  43. Shi, Y. (2014). A glimpse of structural biology through X-ray crystallography. Cell, 159, 995–1014.

    Article  CAS  Google Scholar 

  44. Skjaerven, L., Martinez, A., & Reuter, N. (2011). Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit. Proteins, 79, 232–243.

    Article  CAS  Google Scholar 

  45. Sun, J., & Sampson, N. S. (1999). Understanding protein lids: kinetic analysis of active hinge mutants in triosephosphate isomerase. Biochemistry, 38, 11474–11481.

    Article  CAS  Google Scholar 

  46. Sussman, J. L., Abola, E. E., Lin, D., Jiang, J., Manning, N. O., & Prilusky, J. (1999). The protein data bank. Bridging the gap between the sequence and 3D structure world. Genetica, 106, 149–158.

    Article  CAS  Google Scholar 

  47. Teilum, K., Olsen, J. G., & Kragelund, B. B. (2009). Functional aspects of protein flexibility. Cellular and Molecular Life Sciences, 66, 2231–2247.

    Article  CAS  Google Scholar 

  48. Timson, D. J. (2015). Quantitative enzymology. Current Enzyme Inhibition, 11, 12–31.

    Article  CAS  Google Scholar 

  49. Timson, D. J., & Lindert, S. (2013). Comparison of dynamics of wildtype and V94 M human UDP-galactose 4-epimerase-a computational perspective on severe epimerase-deficiency galactosemia. Gene, 526, 318–324.

    Article  CAS  Google Scholar 

  50. Trodler, P., & Pleiss, J. (2008). Modeling structure and flexibility of Candida antarctica lipase B in organic solvents. BMC Structural Biology, 8, 9.

    Article  Google Scholar 

  51. Wacker, S. A., Bradley, M. J., Marion, J., & Bell, E. (2010). Ligand-induced changes in the conformational stability and flexibility of glutamate dehydrogenase and their role in catalysis and regulation. Protein Science, 19, 1820–1829.

    Article  CAS  Google Scholar 

  52. Waller, I. (1923). Zur Frage der Einwirkung der Wärmebewegung auf die Interferenz von Röntgenstrahlen. Z. Physik, 17, 398–408.

    Article  CAS  Google Scholar 

  53. Wang, H., Liu, Y., Huai, Q., Cai, J., Zoraghi, R., Francis, S. H., Corbin, J. D., Robinson, H., Xin, Z., Lin, G., & Ke, H. (2006). Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development. The Journal of Biological Chemistry, 281, 21469–21479.

    Article  CAS  Google Scholar 

  54. Xie, Y., An, J., Yang, G., Wu, G., Zhang, Y., Cui, L., & Feng, Y. (2014). Enhanced enzyme kinetic stability by increasing rigidity within the active site. The Journal of Biological Chemistry, 289, 7994–8006.

    Article  CAS  Google Scholar 

  55. Yang, J., Fu, X., Jia, Q., Shen, J., Biggins, J. B., Jiang, J., Zhao, J., Schmidt, J. J., Wang, P. G., & Thorson, J. S. (2003). Studies on the substrate specificity of Escherichia coli galactokinase. Organic Letters, 5, 2223–2226.

    Article  CAS  Google Scholar 

  56. Yang, J., Fu, X., Liao, J., Liu, L., & Thorson, J. S. (2005). Structure-based engineering of E. coli galactokinase as a first step toward in vivo Glycorandomization. Chemistry & Biology, 12, 657–664.

    Article  CAS  Google Scholar 

  57. Yang, J., Liu, L., & Thorson, J. S. (2004). Structure-based enhancement of the first anomeric glucokinase. Chembiochem : a European journal of chemical biology, 5, 992–996.

    Article  CAS  Google Scholar 

  58. Zhu, F., Zhuang, Y., Wu, B., Li, J., & He, B. (2016). Rational substitution of surface acidic residues for enhancing the Thermostability of thermolysin. Applied Biochemistry and Biotechnology, 178, 725–738.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MM thanks the Department of Employment and Learning, Northern Ireland (DELNI, UK) for a PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Timson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McAuley, M., Timson, D.J. Modulating Mobility: a Paradigm for Protein Engineering?. Appl Biochem Biotechnol 181, 83–90 (2017). https://doi.org/10.1007/s12010-016-2200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2200-y

Keywords

Navigation