Skip to main content
Log in

Effects of Melatonin on Colchicine-Treated PLBs of Dendrobium sonia-28 Orchid

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dendrobium hybrid orchid is popular in orchid commercial industry due to its short life cycle and ability to produce various types of flower colours. This study was conducted to identify the morphological, biochemical and scanning electron microscopy (SEM) analysis in the Dendrobium sonia-28 orchid plants. In this study, 0.05 and 0.075 % of colchicine-treated Dendrobium sonia-28 (4-week-old culture) protocorm-like bodies (PLBs) were treated in different concentrations of melatonin (MEL) posttreatments (0, 0.05, 0.1, 0.5, 1, 5 and 10 μM). Morphological parameters such as number of shoots, growth index and number of PLBs were determined. In the 0.05 and 0.075 % of colchicine-treated PLBs which were posttreated with 0.05 μM MEL resulted in the highest value of the morphological parameters tested based on the number of shoots (84.5 and 96.67), growth index (16.94 and 12.15) and number of PLBs (126.5 and 162.33), respectively. SEM analysis of the 0.05 μM MEL posttreatment on both the colchicine-treated regenerated PLBs showed irregular cell lineages, and some damages occurred on the stomata. This condition might be due to the effect of plasmolyzing occurred in the cell causing irregular cell lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Plate 1
Plate 2

Similar content being viewed by others

Abbreviations

MEL:

Melatonin

SEM:

Scanning electron microscopy

PLBs:

Protocorm-like bodies

References

  1. Govaerts, R. (2006). World Checklist of Monocotyledons. Kew: The Board of Trustees of the Royal Botanic Gardens.

    Google Scholar 

  2. Dressler, R. L. (1981). The orchids: natural history and classification. Harvest University Press, (pp. 283–301).

  3. Chase, M. W., Freudenstein, J. F., & Cameron, K. M. (2003). DNA data and Orchidaceae systematics: a new phylogenetic classification. In K. W. Dixon, S. P. Kell, R. L. Barrett, & P. J. Cribb (Eds.), Orchid conservation (pp. 69–89). Kota Kinabalu: Natural History Publications.

    Google Scholar 

  4. Cribb, P. J., Kell, S. P., Kingsley, W. D., & Barrett, R. L. (2003). Orchid conservation: a global perspective. In K. W. Dixon, S. P. Kell, R. L. Barrett, & P. J. Cribb (Eds.), Orchid conservation (pp. 1–24). Kota Kinabalu: Natural History Publications.

    Google Scholar 

  5. Sikora, P., Chawade, A., Larsson, M., Olsson, J., & Olsson, O. (2012). Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International Journal of Plant Genomics, 2011, 1–13.

    Article  Google Scholar 

  6. Predieri, S. (2001). Mutation induction and tissue culture in improving fruits. Plant Cell, Tissue and Organ Culture, 64, 185–210.

    Article  CAS  Google Scholar 

  7. Adaniya, S., & Shirai., D. (2001). In vitro induction of tetraploid ginger (Zingiber officinale Roscoe) and its pollen fertility and germinability. Scientia Horticulturae, 88, 277–287.

    Article  Google Scholar 

  8. Thao, N. T. P., Ureshino, K., Miyajima, I., Ozaki, Y., & Okubo, H. (2003). Induction of tetraploids in ornamental Alocasia through colchicine and oryzalin treatments. Plant Cell, Tissue and Organ Culture, 72, 19–25.

    Article  CAS  Google Scholar 

  9. Omidbaigi, R., Mirzaee, M., Hassani, M. E., & Sedghi Moghadam, M. (2010). Induction and identification of polyploidy in basil (Ocimum basilicum L.) medicinal plant by colchicine treatment. International Journal of Plant Production, 4, 87–98.

    Google Scholar 

  10. Weber, S., Ünker, F., & Friedt, W. (2005). Improved doubled haploid production protocol for Brassica napus using microspore colchicine treatment in vitro and ploidy determination by flow cytometry. Plant Breeding, 124, 511–513.

    Article  Google Scholar 

  11. Roy, A., Leggett, G., & Koutoulis, A. (2001). In vitro tetraploid induction and generation of tetraploids from mixoploids in hop (Humulus lupulus L.). Plant Cell Reports, 20, 489–495.

    Article  CAS  Google Scholar 

  12. Zhou, W., Tang, G. X., & Hagberg, P. (2002). Efficient production of doubled haploid plants by immediate colchicine treatment of treatment of isolated microspores in winter Brassica napus. Plant Growth Regulation, 37(2), 185–192.

    Article  CAS  Google Scholar 

  13. Lerner, A. B., Case, J. D., Takahashi, Y., Lee, T. H., & Mori, W. (1958). Isolation of melatonin, the pineal gland factor that lightens melanocytes. Journal of the American Chemical Society, 80, 2587–2587.

    Article  CAS  Google Scholar 

  14. Hardeland, R., Cardinali, D. P., Srinivasan, V., Spence, D. W., Brown, G. M., & Pandi-Perumal, S. R. (2011). Melatonin—a pleiotropic, orchestrating regulator molecule. Progress in Neurobiology, 93, 350–384.

    Article  CAS  Google Scholar 

  15. Yu, H.S., & Reiter, R.J. (1992). Melatonin: biosynthesis, physiological effects, and clinical applications. CRC Press.

  16. Brzezinski, A. (1997). Melatonin in humans. The New England Journal of Medicine, 336, 186–195.

    Article  CAS  Google Scholar 

  17. Olcese, J. (2000). Melatonin after four decades. Springer. New York: Kluwer Academic. 2000, 181–190.

  18. Reiter, R. J., Burkhardt, S., Cabrera, J., & Garcia, J. J. (2002). Beneficial neurobiological effects of melatonin under conditions of increased oxidative stress. Current Medicinal Chemistry: Central Nervous System Agents, 2, 45.

    CAS  Google Scholar 

  19. Cano, A., Alcaraz, O., & Arnao, M. B. (2003). Free radical-scavenging activity of indolic compounds in aqueous and ethanolic media. Analytical and Bioanalytical Chemistry, 376, 33–37.

    Article  CAS  Google Scholar 

  20. Tan, D. X., Hardeland, R., Lucien, C. M., Poeggeler, B., Lopez-Burillo, S., Mayo, C., Sainz, R. M., & Reiter, R. J. (2003). Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. Journal of Pineal Research, 34, 249–259.

    Article  CAS  Google Scholar 

  21. Teixeira, A., Morfim, M. P., de Cordova, C. A., Charão, C. C., de Lima, V. R., & Creczynski-Pasa, T. B. (2003). Melatonin protects against pro-oxidant enzymes and reduces lipid peroxidation in distinct membranes induced by the hydroxyl and ascorbyl radicals and by peroxynitrite. Journal of Pineal Research, 35, 262–268.

    Article  CAS  Google Scholar 

  22. Reiter, R. J., Tan, D. X., Manchester, L. C., Simopoulos, A. P., Maldonado, M. D., Flores, L. J., & Terron, M. P. (2006). Melatonin in edible plants (phytomelatonin): identification, concentrations, bioavailability and proposed functions. World Review of Nutrition and Dietetics, 97, 211–230.

    Article  Google Scholar 

  23. Park, W. J. (2011). Melatonin as an endogenous plant regulatory signal: debates and perspectives. Journal of Plant Biology, 54, 143–149.

    Article  CAS  Google Scholar 

  24. Galano, A., Tan, D. X., & Reiter, R. J. (2013). On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. Journal of Pineal Research, 54, 245–257.

    Article  CAS  Google Scholar 

  25. Sarropoulou, V. N., Therios, I. N., & Dimassi-Theriou, K. N. (2012). Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and MxM 60 (P. avium × P. mahaleb). Journal of Pineal Research, 52, 38–46.

    Article  CAS  Google Scholar 

  26. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  27. Harborne., J. (1973). Phytochemical methods, a guide to modern techniques of plant analysis, JB Harborne (p. 278). London: Chapman.

    Google Scholar 

  28. Whistler, R. L., & BeMiller, J. N. (1962). L-lyxose. In R. L. Whistler & M. L. Wolfrom (Eds.), Methods in carbohydrate chemistry (pp. 79–80). London: Academic Press.

    Google Scholar 

  29. Troll, W., & Lindsley, J. (1955). A photometric method for the determination of proline. The Journal of Biological Chemistry, 215, 655–660.

    CAS  Google Scholar 

  30. Bates, L., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  31. Bleiss, W., & Ehwald, R. (1993). Transient changes in length and growth of wheat coleoptile segments following treatments with osmotica and auxin. Physiologia Plantarum, 88, 541–548.

    Article  CAS  Google Scholar 

  32. Hernández-Ruiz, J., Cano, A., & Arnao, M. B. (2004). Melatonin: a growth-stimulating compound present in lupin tissues. Planta, 220, 140–144.

    Article  Google Scholar 

  33. Liu, J., Wang, W., Wang, L., & Sun, Y. (2015). Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regulation, 77, 317–326.

    Article  CAS  Google Scholar 

  34. Zhang, N., Zhao, B., Zhang, H. J., Weeda, S., Yang, C. H., Yang, Z. C., Ren, S., & Guo, Y. D. (2013). Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Journal of Pineal Research, 54, 15–23.

    Article  CAS  Google Scholar 

  35. Posmyk, M. M., Bałabusta, M., Wieczorek, M., Sliwinska, E., & Janas, K. M. (2009). Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. Journal of Pineal Research, 46, 214–223.

    Article  CAS  Google Scholar 

  36. Kołodziejczyk, I., Dzitko, K., Szewczyk, R., & Posmyk, M. M. (2016). Exogenous melatonin expediently modifies proteome of maize (Zea mays L.) embryo during seed germination. Acta Physiologiae Plantarum, 38, 146.

    Article  Google Scholar 

  37. Jun, Y. E., Wang, S., Deng, X., Yin, L., Xiong, B., & Wan, X. (2016). Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiologiae Plantarum, 38, 48.

    Article  Google Scholar 

  38. Tan, D. X., Hardeland, R., & Manchester, L. C. (2003). Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. Journal of Pineal Research, 34, 249–259.

    Article  CAS  Google Scholar 

  39. Reiter, R. J., & Tan, D. X. (2002). Melatonin: an antioxidant in edible plants. Annals of the New York Academy of Sciences, 957, 341–344.

    Article  CAS  Google Scholar 

  40. Arnao, M., & Hernández-Ruiz, J. (2009). Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. Journal of Pineal Research, 46, 58–63.

    Article  CAS  Google Scholar 

  41. Zhao, Y., Qi, L. W., Wang, W. M., Saxena, P. K., & Liu, C. Z. (2011). Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. Journal of Pineal Research, 50, 83–88.

    Article  CAS  Google Scholar 

  42. Zaman, Z., Jordan, P. M., & Akhtar, M. (1973). Mechanism and stereochemistry of the 5-aminolaevulinate synthetase reaction. Biochemistry Journal, 135, 257–263.

    Article  CAS  Google Scholar 

  43. Olcese, J., & Wesche, A. (1989). The harderian gland. Comparative Biochemistry and Physiology Part A: Physiology, 93, 655–665.

    Article  CAS  Google Scholar 

  44. Rodriguez, C., Kotler, M., Menendezpelaez, A., Antolin, I., Uria, H., & Reiter, R. J. (1994). Circadian-rhythm in 5-aminolevulinate synthase messenger-rna levels in the harderian-gland of the Syrian-hamster-involvement of light-dark cycle and pineal function. Endocrine, 2, 863–868.

    CAS  Google Scholar 

  45. Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35, 753–759.

    Article  CAS  Google Scholar 

  46. Szabados, L., & Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15, 89–97.

    Article  CAS  Google Scholar 

  47. Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28, 1057–1060.

    Article  CAS  Google Scholar 

  48. Kishor, P. K., Sangam, S., Amrutha, R. N., Sri Laxmi, P., Naidu, K. R., Rao, K. R. S., Sreenath Rao, S., Reddy, K. J., Theriappan, P., & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science, 88, 424–438.

    CAS  Google Scholar 

  49. Antony, J. J. J., Keng, C. L., Rathinam, X., Marimuthu, S., & Subramaniam, S. (2011). Effect of preculture and PVS2 incubation conditions followed by histological analysis in the cryopreserved PLBs of’Dendrobium Bobby Messina orchid. Australian Journal of Crop Science, 5, 1557–1564.

    CAS  Google Scholar 

  50. You, X. L., Yi, J. S., & Choi, Y. E. (2006). Cellular change and callose accumulation in zygotic embryos of Eleutherococcus senticosus caused by plasmolyzing pretreatment result in high frequency of single-cell-derived somatic embryogenesis. Protoplasma, 227, 105–112.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to USM Research University Grant (1001/PBIOLOGI/811309) for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sreeramanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, M...S., Antony, J.J.J., Islam, S.M.S. et al. Effects of Melatonin on Colchicine-Treated PLBs of Dendrobium sonia-28 Orchid. Appl Biochem Biotechnol 181, 15–31 (2017). https://doi.org/10.1007/s12010-016-2196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2196-3

Keywords

Navigation