Skip to main content
Log in

Single-Step Partial Purification of Intracellular β-Galactosidase from Kluyveromyces lactis Using Microemulsion Droplets

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Partial purification of β-galactosidase from the crude extract of Kluyveromyces lactis was carried out using water-in-isooctane microemulsions formed by the anionic surfactant, sodium di-ethylhexyl sulfosuccinate (Aerosol OT). In order to obtain the crude extract, yeast cells of K. lactis were disrupted by a cell disrupter and separated. The purification of β-galactosidase from the extract by a recently developed one-step reversed micellar (i.e., microemulsion-based) extraction method was then tested, by measuring total protein mass and enzyme activity in the product stream and by analyzing its composition using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography. Effects of salt concentration, protein concentration, and pH on the extraction were investigated. Using this approach, a 5.4-fold purification of β-galactosidase was achieved with 96 % total activity recovery, using a feed containing crude extract and 50 mM K-phosphate buffer (pH 7.5) and 50 mM KCl. Gel filtration chromatography showed that the single extraction was successful at removing low molecular weight impurity proteins (molecular weight (MW) < 42 kDa) from the crude extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scrimshaw, N. S., & Murray, E. B. (1988). The acceptability of milk and milk-products in populations with a high prevalence of lactose-intolerance. American Journal of Clinical Nutrition, 48, 1083–1159.

    Google Scholar 

  2. Vesa, T. H., Marteau, P., & Korpela, R. (2000). Lactose intolerance. Journal of the American College of Nutrition, 19, 165S–175S.

    Article  CAS  Google Scholar 

  3. Panesar, P. S., Panesar, R., Singh, R. S., Kennedy, J. F., & Kumar, H. (2006). Microbial production immobilization and applications of β-D-galactosidase. Journal of Chemical Technology and Biotechnology, 81, 530–543.

    Article  CAS  Google Scholar 

  4. Bonner, P. L. R. (2007). Protein purification strategy and equipment in protein purification (1st ed., pp. 1–11). New York City: Taylor and Francis Group.

    Google Scholar 

  5. Becerra, M., Cerdan, E., & Siso, M. I. G. (1998). Micro-scale purification of β-galactosidase from Kluyveromyces lactis reveals that dimeric and tetrameric forms are active. Biotechnology Techniques, 12, 253–256.

    Article  CAS  Google Scholar 

  6. Becerra, M., Rodriguez-Belmonte, E., Cerdan, M. E., & Siso, M. I. G. (2001). Extraction of intracellular proteins from Kluyveromyces lactis. Food Technology and Biotechnology, 39, 135–139.

    CAS  Google Scholar 

  7. Biermann, L., & Glantz, M. D. (1968). Isolation and characterization of β-galactosidase from Saccharomyces lactis. Biochimica et Biophysica Acta, 167, 373–377.

    Article  CAS  Google Scholar 

  8. Dickson, R. C., Dickson, L. R., & Markin, J. S. (1979). Purification and properties of an inducible β-galactosidase isolated from the yeast Kluyveromyces lactis. Journal of Bacteriology, 137, 51–61.

    CAS  Google Scholar 

  9. Ganeva, V., Galutzov, B., Eynard, N., & Teissié, J. (2001). Electroinduced extraction of β-galactosidase from Kluyveromyces lactis. Applied Microbiology and Biotechnology, 56, 411–413.

    Article  CAS  Google Scholar 

  10. Matheus, A. O. R., & Rivas, N. (2003). Production and partial characterization of beta-galactosidase from Kluyveromyces lactis grown in deproteinized whey. Archivos Latinoamericanos de Nutrición, 53, 194–201.

    CAS  Google Scholar 

  11. Pinho, J. M. R., & Passos, F. M. L. (2011). Solvent extraction of β-galactosidase from Kluyveromyces lactis yields a stable and highly active enzyme preparation. Journal of Food Biochemistry, 35, 323–336.

    Article  CAS  Google Scholar 

  12. Banik, R. M., Santhiagu, A., Kanari, B., Sabarinath, C., & Upadhyay, S. N. (2003). Technological aspects of extractive fermentation using aqueous two-phase systems. World Journal of Microbiology and Biotechnology, 19, 337–348.

    Article  CAS  Google Scholar 

  13. Rodríguez, A. P., Leiro, R. F., Trillo, M. C., Cerdan, M. E., Siso, M. I. G., & Becerra, M. (2006). Secretion and properties of a hybrid Kluyveromyces lactis-Aspergillus niger β-galactosidase. Microbial Cell Factories, 5, 41.

    Article  Google Scholar 

  14. Göklen, K. E., & Hatton, T. A. (1985). Protein extraction using reverse micelles. Biotechnology Progress, 1, 69–74.

    Article  Google Scholar 

  15. Luisi, P. L. (1985). Enzyme hosted in reverse micelles in hydrocarbon solution. Angewandte Chemie International Edition, 24, 439–450.

    Article  Google Scholar 

  16. Pires, M. J., Aires-Barros, M. R., & Cabral, J. M. S. (1996). Liquid-liquid extraction of proteins with reversed micelles. Biotechnology Progress, 12, 290–301.

    Article  CAS  Google Scholar 

  17. Krishna, S. H., Srinivas, N. D., Raghavarao, K. S. M. S., & Karanth, N. G. (2002). Reverse micellar extraction for downstream processing of proteins/enzymes. Advances in Biochemical Engineering and Biotechnology, 75, 119–183.

    CAS  Google Scholar 

  18. Tonova, K., & Lazarova, Z. (2008). Reversed micelle solvents as tools of enzyme purification and enzyme-catalyzed conversion. Biotechnology Advances, 26, 516–532.

    Article  CAS  Google Scholar 

  19. Giovenco, S., Verbeggen, F., & Laane, C. (1987). Purification of intracellular enzymes from whole bacterial cells using reversed micelles. Enzyme and Microbial Technology, 9, 470–473.

    Article  CAS  Google Scholar 

  20. Shiomori, K., Kawano, Y., Kuboi, R., & Komasawa, I. (1994). Activity of β-galactosidase solubilized in reverse micelles and selective back-extraction from micellar phase. Journal of Chemical Engineering of Japan, 27, 410–414.

    Article  CAS  Google Scholar 

  21. Shiomori, K., Kawano, Y., Kuboi, R., & Komasawa, I. (1995). Effective purification method of large molecular weight proteins using conventional AOT reverse micelles. Journal of Chemical Engineering of Japan, 28, 803–809.

    Article  CAS  Google Scholar 

  22. Hemavathi, A. B., Hebbar, H. U., & Raghavarao, K. S. M. S. (2008). Reverse micellar extraction of β-galactosidase from barley (Hordeum vulgare). Applied Biochemistry and Biotechnology, 151, 522–531.

    Article  CAS  Google Scholar 

  23. Mazı, B. G., Hamamcı, H., & Dungan, S. R. (2012). One-step separation of β-galactosidase from β-lactoglobulin using water-in-oil microemulsions. Food Chemistry, 132, 326–332.

    Article  Google Scholar 

  24. Nandini, K. E., & Rastogi, N. K. (2010). Single step purification of lactoperoxidase from whey involving reverse micelles-assisted extraction and its comparison with reverse micellar extraction. Biotechnology Progress, 26, 763–771.

    Article  CAS  Google Scholar 

  25. Su, C. K., & Chiang, B. H. (2003). Extraction of immunoglobulin-G from colostral whey by reverse micelles. Journal of Dairy Science, 86, 1639–1645.

    Article  CAS  Google Scholar 

  26. Noh, K. H., & Imm, J. Y. (2005). One-step separation of lysozyme by reverse micelles formed by the cationic surfactant, cetyldimethylammonium bromide. Food Chemistry, 93, 95–101.

    Article  CAS  Google Scholar 

  27. Turkel, S., Arik, E., & Guzelvardar, S. (2008). The effect of hyperosmotic stress and nitrogen starvation on growth and beta-galactosidase synthesis in Kluyveromyces lactis and Kluyveromyces marxianus. Turkish Journal of Biology, 32, 175–180.

    CAS  Google Scholar 

  28. Dagbagli, S., & Goksungur, Y. (2009). Optimization of beta-galactosidase production in stirred tank bioreactor using Kluyveromyces lactis NRRL Y-8279. Food Science and Biotechnology, 18, 1342–1350.

    CAS  Google Scholar 

  29. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  30. Miller, J. H. (1972). Protein purifications in experiments in molecular genetics (3rd ed., pp. 398–404). Cold Spring Harbor: Cold Spring Harbor Laboratory.

    Google Scholar 

  31. Gowda, L. R., Joshi, M. S., & Bhat, S. G. (1988). In situ assay of intracellular enzymes of yeast (Kluyveromyces fragilis) by digitonin permeabilization of cell-membrane. Analytical Biochemistry, 175, 531–536.

    Article  CAS  Google Scholar 

  32. Vallee, B. L., & Hoch, F. L. (1955). Zinc, a component of yeast alcohol dehydrogenase. Proceedings of the National Academy of Science, 41, 327–338.

    Article  CAS  Google Scholar 

  33. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage-T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  34. Gerhardt, N. I., & Dungan, S. R. (2004). Changes in microemulsion and protein structure in IgG-AOT-brine-isooctane systems. Journal of Physical Chemistry B, 108, 9801–9810.

    Article  CAS  Google Scholar 

  35. Tello-Solís, S. R., Jiménez-Guzmán, J., Sarabia-Leos, C., Gómez-Ruíz, L., Cruz-Guerrero, A. E., Rodríguez-Serrano, G. M., & García-Guerrero, M. (2005). Determination of the secondary structure of Kluyveromyces lactis β-galactosidase by circular dichroism and its structure-activity relationship as a function of the pH. Journal of Agricultural and Food Chemistry, 53, 10200–10204.

    Article  Google Scholar 

  36. Cavaille, D., & Combes, D. (1995). Characterization of β-galactosidase from Kluyveromyces lactis. Biotechnology and Applied Biochemistry, 22, 55–64.

    CAS  Google Scholar 

  37. Krieger, F., Spinka, M., Golbik, R., Hübner, G., & König, S. (2002). Pyruvate decarboxylase from Kluyveromyces lactis. An enzyme with an extraordinary substrate activation behaviour. European Journal of Biochemistry, 269, 3256–3263.

    Article  CAS  Google Scholar 

  38. Grieve, P. A., Kitchen, B. J., Dulley, J. R., & Bartley, J. (1983). Partial characterization of cheese-ripening proteinases produced by the yeast Kluyveromyces lactis. Journal of Dairy Research, 50, 469–480.

    Article  CAS  Google Scholar 

  39. Rahaman, R. S., & Hatton, T. A. (1991). Structural characterization of β-chymotrypsin-containing AOT reversed micelles. Journal of Physical Chemistry, 95, 1799–1811.

    Article  CAS  Google Scholar 

  40. Kelley, B. D., Rahaman, R. S., & Hatton, T. A. (1994). Salt and surfactant effects on protein solubilization in AOT-isooctane reversed micelles. In W. L. Hinze (Ed.), Organized assemblies in chemical analysis (pp. 123–142). Greenwich: JAI Press.

    Google Scholar 

  41. Shimek, J. W., Rohloff, C. M., Goldberg, J., & Dungan, S. R. (2005). Effect of α-lactalbumin on the phase behaviour of AOT-brine-isooctane mixtures: role of charge interactions. Langmuir, 21, 5931–5939.

    Article  CAS  Google Scholar 

  42. Lee, B.-K., Hong, D.-P., Lee, S.-S., & Kuboi, R. (2004). Analysis of protein back-extraction processes in alcohol- and carboxylic acid-mediated AOT reverse micellar systems based on structural changes of proteins and reverse micelles. Biochemical Engineering Journal, 22, 71–79.

    Article  CAS  Google Scholar 

  43. Seoud, O.A. (1994) Reversed micelles and water-in-oil microemulsions: formation and some relevant properties. In: Organized assemblies in chemical analysis. Reversed micelles, 1st ed. W. L. Hinze (Ed.) Vol. 1, (pp. 1-36). JAI Press INC: Greenwich.

  44. Dekker, M. & Leser, M.E. (1994) The use of reverse micelles for the separation of proteins. In: Highly selective separations in biotechnology. G. Street (Ed.) (pp. 86-120). Blackie A & P:London.

  45. Luisi, P. L., Giomini, M., Pileni, M. P., & Robinson, B. H. (1988). Reversed micelles as hosts for proteins and small molecules. Biochimica et Biophysica Acta, 947, 209–246.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Maxilact LX-5000 was a generous gift from DSM Food Specialties. Bekir G. Mazı is indebted to the Scientific and Technical Research Council of Turkey (Grant TUBITAK-BIDEB-2214) for the fellowship. This research was funded by grant METU-BAP-08-11-DPT.2002K120510 (Turkey) and TUBITAK-TOVAK-108O823 and seed grants from the UC Davis Robert Mondavi Institute and University Outreach and International Programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekir G. Mazı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazı, B.G., Hamamcı, H., Ogrydziak, D.M. et al. Single-Step Partial Purification of Intracellular β-Galactosidase from Kluyveromyces lactis Using Microemulsion Droplets. Appl Biochem Biotechnol 180, 1000–1015 (2016). https://doi.org/10.1007/s12010-016-2148-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2148-y

Keywords

Navigation