Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The WRKY Transcription Factor Family in Citrus: Valuable and Useful Candidate Genes for Citrus Breeding


WRKY transcription factors belong to a large family of plant transcriptional regulators whose members have been reported to be involved in a wide range of biological roles including plant development, adaptation to environmental constraints and response to several diseases. However, little or poor information is available about WRKY’s in Citrus. The recent release of completely assembled genomes sequences of Citrus sinensis and Citrus clementina and the availability of ESTs sequences from other citrus species allowed us to perform a genome survey for Citrus WRKY proteins. In the present study, we identified 100 WRKY members from C. sinensis (51), C. clementina (48) and Citrus unshiu (1), and analyzed their chromosomal distribution, gene structure, gene duplication, syntenic relation and phylogenetic analysis. A phylogenetic tree of 100 Citrus WRKY sequences with their orthologs from Arabidopsis has distinguished seven groups. The CsWRKY genes were distributed across all ten sweet orange chromosomes. A comprehensive approach and an integrative analysis of Citrus WRKY gene expression revealed variable profiles of expression within tissues and stress conditions indicating functional diversification. Thus, candidate Citrus WRKY genes have been proposed as potentially involved in fruit acidification, essential oil biosynthesis and abiotic/biotic stress tolerance. Our results provided essential prerequisites for further WRKY genes cloning and functional analysis with an aim of citrus crop improvement.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Talon, M. & Gmitter, Jr. F.G. (2008) Citrus genomics. International Journal of Plant Genomics.1-18.

  2. 2.

    http://faostat3.fao.org/browse/Q/QC/E. Accessed March 2016.

  3. 3.

    Krug, C. A. (1943). Chromosomes numbers in the subfamily Aurantioideae with special reference to the genus Citrus. Botanical Gazette, 48, 602–611.

  4. 4.

    Gmitter, F. G., Jr., Chen, C., Machado, M. A., Alves de Souza, A., Ollitrault, P., Froehlicher, Y., & Shimizu, T. (2012). Citrus genomics. Tree Genetics & Genomes, 8, 611–626.

  5. 5.

    Dambier, D., Benyahia, H., Pensabene-Bellavia, G., Aka Kacar, Y., Froelicher, Y., Belfalah, Z., Beniken, L., Handaji, N., Printz, B., Morillon, R., Yesiloglu, T., Navarro, L., & Ollitrault, P. (2011). Somatic hybridization for Citrus rootstock breeding: an effective tool to solve some important issues of the Mediterranean Citrus industry. Plant Cells Reports, 30, 883–900.

  6. 6.

    Olivares-Fuster, O., Duran-Vila, N., & Navarro, L. (2005). Electrochemical protoplast fusion in Citrus. Plant Cell Reports, 24, 112–119.

  7. 7.

    ICGC (2003). Draft of the International Citrus Genome Consortium White Paper, 42. Available from http://www.Citrusgenome.ucr.edu/. Accessed November 2012.

  8. 8.

    Tuskan, G. A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr & Gray). Science, 313, 1596–1604.

  9. 9.

    Forment, J., Gadea, J., Huerta, L., Abizanda, L., Agusti, J., Alamar, J., Alos, E., Andres, F., Arribas, R., Beltran, J. P., et al. (2005). Development of a Citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Molecular Biology, 57, 375.

  10. 10.

    Terol, J., Conesa, A., Colmenero, J. S., Cercos, M., Tadeo, F., Agustí, J., Alós, E., Andres, F., Soler, G., Brumos, J., et al. (2007). Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genomics, 8, 31.

  11. 11.

    Bausher, M., Shatters, R., Chaparro, J., Dang, P., Hunter, W., & Niedz, R. (2003). An expressed sequence tag (EST) set from Citrus sinensis L. Osbeck whole seedlings and the implications of further perennial source investigations. Plant Science, 165, 415–422.

  12. 12.

    Shimada, T., Fujii, H., Endo, T., Yazaki, J., Kishimoto, N., Shimbo, K., Kikuchi, S., & Omura, M. (2005). Toward comprehensive expression profiling by microarray analysis in Citrus: monitoring the expression profiles of 2213 genes during fruit development. Plant Science, 168, 1383.

  13. 13.

    Rios, G., Naranjo, M. A., Iglesias, D., Ruiz, O., & Talon, M. (2009). Genomics meets induced mutations in Citrus: identification of deleted genes through comparative genomic hybridization. In Q. Y. Shu (Ed.), Induced Plant Mutations in the Genomics Era (pp. 407–410). Rome: Food and Agriculture Organization of the United Nations.

  14. 14.

    Ülker, B., & Somssich, I. E. (2004). WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology, 7, 491–498.

  15. 15.

    Eulgem, T., Rushton, P. J., Robatzek, S., & Somssich, I. E. (2000). The WRKY superfamily of plant transcription factors. Trends in Plant Science, 5, 199.

  16. 16.

    Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C. Z., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O. J., Samaha, R. R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J. Z., Ghandehari, D., Sherman, B. K., & Yu, G. L. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 290, 2105–2110.

  17. 17.

    Rushton, P. J., Macdonald, H., Huttly, A. K., Lazarus, C. M., & Hooley, R. (1995). Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of -Amy2 genes. Plant Molecular Biology, 29, 691–702.

  18. 18.

    Mangelsen, E., Kilian, J., Berendzen, K. W., Kolukisaoglu, U. H., Harter, K., Jansson, C., & Wanke, D. (2008). Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics, 9, 194.

  19. 19.

    Zhang, Y., & Wang, L. (2005). The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology, 5, 1.

  20. 20.

    Rushton, P. J., Somssich, I. E., Ringler, P., & Shen, C. J. (2010). WRKY transcription factors. Trends in Plant Science, 15, 247–258.

  21. 21.

    Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., & Zhang, S. (2011). Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell, 23(4), 1639–1653.

  22. 22.

    Eulgem, T., & Somssich, I. E. (2007). Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 10(366–371), 2007.

  23. 23.

    Pandey, S. P., & Somssich, I. E. (2009). The role of WRKY transcription factors in plant immunity. Plant Physiology, 150, 1648–1655.

  24. 24.

    Wu, K. L., Guo, Z. J., Wang, H. H., & Li, J. (2005). The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Research, 12, 9–26.

  25. 25.

    Ross, C. A., Liu, Y., & Shen, Q. J. (2007). The WRKY gene family in rice (Oryza sativa). Journal of Integrative Plant Biology, 49, 827–842.

  26. 26.

    Ling, J., Jiang, W., Zhang, Y., Yu, H., Mao, Z., Gu, X., Huang, S., & Xie, B. (2011). Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics, 12, 471.

  27. 27.

    Wei, K. F., Chen, J., Chen, Y. F., Wu, L. J., & Xie, D. X. (2012). Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Research, 19(2), 153–164.

  28. 28.

    Huang, S., Gao, Y., Liu, J., Peng, X., Niu, X., Fei, Z., Cao, S., & Liu, Y. (2012). Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Molecular Genetics and Genomics, 287(6), 495–513.

  29. 29.

    Xiong, W., Xu, X., Zhang, L., Wu, P., Chen, Y., Li, M., Jiang, H., & Wu, G. (2013). Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.). Gene, 524, 124–132.

  30. 30.

    Dou, L., Zhang, X., Pang, C., Song, M., Wei, H., Fan, S., & Yu, S. (2014). Genome-wide analysis of the WRKY gene family in cotton. Molecular Genetics and Genomics, 289, 1103–1121.

  31. 31.

    Guo, A. Y., Chen, X., Gao, G., Zhang, H., Zhu, Q. H., Liu, X. C., Zhong, Y. F., Gu, X., He, K., & Luo, J. (2008). PlantTFDB: a comprehensive plant transcription factor database. Nucleic Acids Research, 36, D966–D969.

  32. 32.

    Stephen, F., Altschul, L., Madden, T., Alejandro, A., Schäffer, Jinghui, Z., Zheng, Z., Webb, M., & David, J. L. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

  33. 33.

    Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST +: architecture and applications Software. BMC Bioinformatics, 10, 421.

  34. 34.

    Huang, X., & Madan, A. (1999). CAP3: a DNA sequence assembly program. Genome Research, 9, 868–877.

  35. 35.

    Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.

  36. 36.

    Solovyev, V., Kosarev, P., Seledsov, I., & Vorobyev, D. (2006). Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biology, 7, 1–10.

  37. 37.

    Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and. Evolution, 24(1596–1599), 2007.

  38. 38.

    Jones, D. T., Taylor, W. R., & Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences, 8, 275–282.

  39. 39.

    Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 37, W202–W208.

  40. 40.

    Xu, Q., Chen, L. L., Ruan, X., Chen, D., Zhu, A., et al. (2012). The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 45, 59–66.

  41. 41.

    Voorrips, R. E. (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77–78.

  42. 42.

    Li, W. H. (1993). Unbiased estimation of the rates of synonymous and non synonymous substitution. Journal of Molecular Evolution, 36, 96–99.

  43. 43.

    Pamilo, P., & Bianchi, N. O. (1993). Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Molecular Biology and Evolution, 10, 271–281.

  44. 44.

    Zheng, Y., & Fei, Z. (2014) iTAK—plant transcription factor & protein kinase identifier and classifier. Fei Bioinformatics Lab, Boyce Thompson Institute and USDA Robert W. Holley Center.

  45. 45.

    Lee, T. H., Tang, H., Wang, X., & Paterson, A. H. (2013). PGDD: a database of gene and genome duplication in plants. Nucleic Acids Research, 41, D1152–D1158.

  46. 46.

    Gasteiger; E., Hoogland, C., Gattiker; A., Duvaud, S., Wilkins, M.R., Appel; R.D., & Bairoch, A. (2005) Protein identification and analysis tools on the ExPASy server;(In) John M. Walker (ed): The proteomics protocols handbook, Humana Press. pp. 571–607.

  47. 47.

    Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The New S Language: a programming environment for data analysis and graphics. Pacific Grove: Wadsworth & Brooks/Cole. ISBN 0-534-09192-X.

  48. 48.

    R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/.

  49. 49.

    Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Klapa, M., Currier, T., Thiagarajan, M., et al. (2003). TM4: a free, open-source system for microarray data management and analysis. Biotechniques, 34, 374–378.

  50. 50.

    Dash, S., Van Hemert, J., Hong, L., Wise, R. P., & Dickerson, J. A. (2012). PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Research, 40(D1), D1194–D1201.

  51. 51.

    Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., & Gruissem, W. (2004). GENEVESTIGATOR Arabidopsis microarray database and analysis toolbox. Plant Physiology, 136, 2621–2632.

  52. 52.

    Schmid, M., Davison, T. S., Henz, S. R., Pape, U. J., Demar, M., Vingron, M., Scholkopf, B., Weigel, D., & Lohmann, J. U. (2005). A gene expression map of Arabidopsis thaliana development. Nature Genetics, 37, 501–506.

  53. 53.

    He, H., Dong, Q., Shao, Y., Jiang, H., Zhu, S., Cheng, B., & Xiang, Y. (2012). Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. Plant Cell Reports, 31, 1199–1217.

  54. 54.

    Li, H.-L., Zhang, L.-B., Guo, D., Li, C.-Z., & Peng, S.-Q. (2012). Identification and expression profiles of the WRKY transcription factor family in Ricinus communis. Gene, 503, 248–253.

  55. 55.

    Ding, M., Chen, J., Jiang, Y., Lin, L., Cao, Y., Wang, M., Zhang, Y., Rong, J., & Ye, W. (2015). Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium. Molecular Genetics and Genomics, 290, 151–171.

  56. 56.

    Zhang, Z. L., Xie, Z., Zou, X., Casaretto, J., Ho, T. H., & Shen, Q. J. (2004). A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiology, 134, 1500–1513.

  57. 57.

    Xie, Z., Zhang, Z. L., Zou, X. L., Huang, J., Ruas, P., Thompson, D., & Shen, Q. J. (2005). Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiology, 137(1), 176–189.

  58. 58.

    Babu, M. M., Iyer, L. M., Balaji, S., & Aravind, L. (2006). The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Research, 34(6505–20), 2006.

  59. 59.

    Park, C. Y., Lee, J. H., Yoo, J. H., Moon, B. C., Choi, M. S., Kang, Y. H., Lee, S. M., Kim, H. S., Kang, K. Y., Chung, W. S., Lim, C. O., & Cho, M. J. (2005). WRKY group IId transcription factors interact with calmodulin. FEBS Letters, 579, 1545–1550.

  60. 60.

    Dong, J., Chen, C., & Chen, Z. (2003). Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Molecular Biology, 51, 21–37.

  61. 61.

    Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., D’Angelo, C., Bornberg-Bauer, E., Kudla, J., & Harter, K. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant Journal, 50, 347–363.

  62. 62.

    Goda, H. (2008). The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. The Plant Journal, 55, 526–542.

  63. 63.

    Febres Vicente, J., Lee, R.F., & Gloria, A. (2007) Genetic transformation of Citrus for pathogen resistance. In I. A. Khan (Ed), Citrus genetics, breeding and biotechnology, chapter 14 (pp 306–327).

  64. 64.

    Alexandrova, K. S., & Conger, B. V. (2002). Isolation of two somatic embryogenesis-related genes from orchardgrass (Dactylis glomerata). Plant Science, 162, 301–307.

  65. 65.

    Luo, M., Dennis, E. S., Berger, F., Peacock, W. J., & Chaudhury, A. (2005). MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 102, 17531–17536.

  66. 66.

    Yu, F., Huaxia, Y., Lu, W., Wu, C., Cao, X., & Guo, X. (2012). GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. BMC Plant Biology, 12, 144.

  67. 67.

    Ryu, H. S., Han, M., Lee, A. K., Cho, J. I., Ryoo, N., Heu, S., Lee, Y. H., Bhoo, S. H., Wang, G. L., Hahn, S. H., & Jeon, J. S. (2006). A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Reports, 25, 836–847.

  68. 68.

    Jiang, Y. Q., & Deyholos, M. K. (2006). Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biology, 6, 25.

  69. 69.

    Jiang, Y. Q., & Deyholos, M. K. (2009). Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 69, 91–105.

  70. 70.

    Golldack, D., Lüking, I., & Yang, O. (2011). Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Reports, 30, 1383–1391.

  71. 71.

    Encinas-Villarejo, S., Maldonado, A. M., Amil-Ruiz, F., de los Santos, B., Romero, F., Pliego-Alfaro, F., Muñoz-Blanco, J., & Caballero, J. L. (2009). Evidence for a positive regulatory role of strawberry (Fragaria x ananassa) FaWRKY1 and Arabidopsis AtWRKY75 proteins in resistance. Journal of Experimental Botany, 60, 3043–3065.

  72. 72.

    Zheng, Z., Qamar, S. A., Chen, Z., & Mengiste, T. (2006). Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant Journal, 48(4), 592–605.

  73. 73.

    Xu, X., Chen, C., Fan, B., & Chen, Z. (2006). Physical and functional interactions between pathogen induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell, 18, 1310–1326.

  74. 74.

    Creelman, R.A., & Rao, M.V. (2002) The oxylipin pathway in Arabidopsis. In Somerville, C.R. and Meyerowitz, E.M., (eds), The Arabidopsis book 1:e0012.

  75. 75.

    Wasilewska, A., Vlad, F., Sirichandra, C., Redko, Y., Jammes, F., Valon, C., Frey, N. F., & Leung, J. (2008). An update on abscisic acid signaling in plants and more. Molecular Plant, 1, 198–217.

  76. 76.

    Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.

  77. 77.

    Seilaniantz Robert, A., Navarro, L., Bari, R., & Jones, J. D. (2007). Pathological hormone imbalances. Current Opinion in Plant Biology, 10(4), 372–379.

  78. 78.

    Li, J., Brader, G., Kariola, T., & Palva, E. T. (2006). WRKY70 modulates the selection of signalling pathways in plant defense. Plant Journal, 46, 477–491.

  79. 79.

    Lai, Z., Vinod, K. M., Zheng, Z., Fan, B., & Chen, Z. (2008). Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biology, 8(1), 68.

  80. 80.

    Bhattarai, K. K., Atamian, H. S., Kaloshian, I., & Eulgem, T. (2010). WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1. Plant Journal, 63(2), 229–240.

  81. 81.

    Journot-Catalino, N., Somssich, I. E., Roby, D., & Kroj, T. (2006). The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell, 18, 3289–3302.

Download references


Authors would express their sincere gratitude to Sana Louati Elarbi for the proofreading of the paper. This research work was supported by the Ministry of Higher Education and Scientific Research of Tunisia (LR15CBBC02, laboratory grant).

Author information

Correspondence to M. Ayadi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

M. Ayadi and M. Hanana contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Additional File 1

Summary table of the results of various databases according to the species of Citrus (DOCX 17 kb)

Additional File 2

Annotation of complete WRKY gene in Citrus. (A catalog of WRKY proteins in the Citrus) (DOCX 44 kb)

Additional File 3

Phylogenetic tree from amino acid sequences of CsWRKY was depicted by the MEGA V6.06 program with the neighbor-joining method (PDF 14 kb)

Additional File 4

Overview (summary) of experiments used in Plex database (XLSX 11 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayadi, M., Hanana, M., Kharrat, N. et al. The WRKY Transcription Factor Family in Citrus: Valuable and Useful Candidate Genes for Citrus Breeding. Appl Biochem Biotechnol 180, 516–543 (2016). https://doi.org/10.1007/s12010-016-2114-8

Download citation


  • Citrus
  • WRKY
  • Fruit acidification
  • Essential oil biosynthesis
  • Stress tolerance
  • Zinc finger