Skip to main content
Log in

Comparative Proteomic Analysis of Streptomyces aureochromogenes Under Different Carbon Sources and Insights into Polyoxin Production

Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, fermentation dynamics process of Streptomyces aureochromogenes was researched. The production of polyoxins in culture medium with moderate concentration sucrose was at a relative high level. And, when the carbon source changed to glucose, the mycelium grew in a better condition, while no poloxins was produced. This phenomenon also happened when increasing the initial concentration of sucrose to three times. To evaluate the regulatory mechanism of polyoxin production, comparative proteomic analysis of S. aureochromogenes was conducted. The result showed that tricarboxylic acid cycle (TCA) cycle, amino metabolism, and fatty acid metabolism were active and glycolysis was repressed. And, the fact that stress and stress-related protein like superoxide dismutase (SOD), Clp protease, and catalase were highly expressed indicated a higher regulator level in synthesis of polyoxins. In addition, enzymes related to transcription or translation processes also revealed a correlation between specific cell growth rate and polyoxin production. This study will be helpful in better understanding the biosynthesis mechanism of polyoxins and metabolism regulation in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Jine, L., Lei, L., Chi, F., et al. (2012). Novel polyoxins generated by heterologously expressing polyoxin biosynthetic gene cluster in the sanN inactivated mutant of Streptomyces ansochromogenes. Microbial Cell Factories, 11, 135.

    Article  Google Scholar 

  2. Hori, M., Eguchi, J., Kakiki, K., & Misato, T. (1974). Studies on the mode of action of polyoxins. VI. Effect of polyoxin B on chitin synthesis in polyoxin-sensitive and resistant strains of Alternaria kikuchiana. Journal of Antibiotics, 27(4), 260–266.

    Article  CAS  Google Scholar 

  3. Hori, M., Kakiki, K., Suzuki, S., & Misato, T. (1971). Studies on the mode of action of polyoxins. Part III. Relation of polyoxin structure to chitin synthetase inhibition. Agricultural and Biological Chemistry, 35(8), 1280–1291.

    CAS  Google Scholar 

  4. Endo, A., & Misato, T. (1969). Polyoxin D, a competitive inhibitor of UDP-N-acetylglucosamine: chitin N-acetylglucosaminyltransferase in Neurospora crassa. Biochemical and Biophysical Research Communications, 37(4), 718–722.

    Article  CAS  Google Scholar 

  5. Chen, W., Qi, J., Pan, W., et al. (2015). Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes. Journal of Industrial Microbiology & Biotechnology, 43, 1–17.

    CAS  Google Scholar 

  6. Qi, J., Liu, J., Wan, D., et al. (2015). Metabolic engineering of an industrial polyoxin producer for the targeted overproduction of designer nucleoside antibiotics. Biotechnology & Bioengineering, 112, 1865–1871.

    Article  CAS  Google Scholar 

  7. Dong, Y., Dong, K., Zheng, Y., Yang, Z., et al. (2014). Allelopathic effects and components analysis of root exudates of faba bean cultivars with different degrees of resistance to Fusarium oxysporum. Chinese Journal of Eco-Agriculture, 22(3), 292–299.

    Article  CAS  Google Scholar 

  8. Caroline, R., Claire, M., & Elisabeth, G. (2013). Development and validation of a colorimetric assay for simultaneous quantification of neutral and uronic sugars. Water Research, 47(8), 2901–2908.

    Article  Google Scholar 

  9. Molloy, M. P., Herbert, B. R., Walsh, B. J., et al. (1998). Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis, 19, 837–844.

    Article  CAS  Google Scholar 

  10. Wessl, D., & Flugge, U. (1984). A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Analytical Biochemistry, 138(1), 141–143.

    Article  Google Scholar 

  11. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  12. Cao, B., Liu, J., & Tian, S. (2012). Oxidative stress acts on special membrane proteins to reduce the viability of Pseudomonas syringae pv tomato. Journal of Proteome Research, 11, 4917–4938.

    Google Scholar 

  13. Othmane, B., Salah, H., & Fatiha, B. (2007). Batch kinetics and modeling of Pleuromutilin production by Pleurotus mutilis. Biochemical Engineering Journal, 36, 14–18.

    Article  Google Scholar 

  14. Kargi, F. (2009). Re-interpretation of the logistic equation for batch microbial growth in relation to Monod kinetics. Letters in Applied Microbiology, 48, 398–401.

    Article  CAS  Google Scholar 

  15. Zhao, B., Wang, L., Li, F., et al. (2010). Kinetics of D-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation. Bioresource Technology, 101, 6499–6505.

    Article  CAS  Google Scholar 

  16. Gong, H., & Lun, S. (1996). The kinetics of lysine batch fermentation. Chinese Journal of Biotechnology, 12(Suppl), 219–225.

    Google Scholar 

  17. Gu, S., Yao, J., Yuan, Q., et al. (2006). Kinetics of Agrobacterium tumefaciens ubiquinone-10 batch production. Process Biochemistry, 41, 1908–1912.

    Article  CAS  Google Scholar 

  18. Eva, S., Jan, B., Alice, Z., et al. (2013). System insight into spore germination of Streptomyces coelicolor. Journal of Proteome Research, 12, 525–536.

    Article  Google Scholar 

  19. Boqiang, L., Weihao, W., Shiping, T., et al. (2012). Exploring pathogenic mechanisms of botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. Journal of Proteome Research, 11, 4249–4260.

    Article  Google Scholar 

  20. Tomomi, O., Takako, K., Eiji, T., et al. (2002). Nuclear translocation of extracellular superoxide dismutase. Biochemical and Biophysical Research Communications, 296, 54–61.

    Article  Google Scholar 

  21. Harmen, M. R., Barbara, U. K., Matthijs, S. N., et al. (2016). Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae. FEMS Yeast Research, 16, fow017.

    Article  Google Scholar 

  22. Benbo, X., Yong, C., Xiling, Z., et al. (2016). Ethanol content in plant of Brassica napus L. correlated with waterlogging tolerance index and regulated by lactate dehydrogenase and citrate synthase. Acta Physical Plant, 38, 81.

    Article  Google Scholar 

  23. Michael, R. W., & Elsa, D. G. (2016). The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein. Wiley Interdisciplinary Reviews-rna, 7, 53–70.

    Article  Google Scholar 

  24. Masanori, I., Hidemitsu, N., Yuko, S., et al. (2015). Glyceraldehyde-3-phosphate dehydrogenase aggregation inhibitor peptide: a potential therapeutic strategy against oxidative stress-induced cell death. Biochemical and Biophysical Research Communications, 467, 373–376.

    Article  Google Scholar 

  25. Xingyuan, L., Jingchao, Z., Yanying, Z., et al. (2015). Domain motions and functionally-key residues of L-alanine dehydrogenase revealed by an elastic network model. International Journal of Molecular Sciences, 16, 29383–29397.

    Article  Google Scholar 

  26. Pernil, R., Herrero, A., & Flores, E. (2010). Catabolic function of compartmentalized alanine dehydrogenase in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. Journal of Bacteriology, 192(19), 5165–5172.

    Article  CAS  Google Scholar 

  27. Ji, A. J., Jaekyung, H., & Jeong, O. (2015). Regulation mechanism of the ald gene encoding alanine dehydrogenase in mycobacterium smegmatis and mycobacteriun tuberculosis by the Lrp/AsnC family regulator AldR. Journal of Bacteriology, 197(19), 3142–3153.

    Article  Google Scholar 

  28. Lahmi, R., Sendersky, E., Perelman, A., et al. (2006). Alanine dehydrogenase activity is required for adequate progression of phycobilisome degradation during nitrogen starvation in Synechococcus elongates PCC 7942. Journal of Bacteriology, 188(14), 5258–5265.

    Article  CAS  Google Scholar 

  29. Ksenla, H., Alrat, K., Fellx, G., et al. (2016). The molecular basis of TnrA control by glutamine synthetase in bacillus subtilis. The Journal of Biological Chemistry, 291(7), 3483–3495.

    Article  Google Scholar 

  30. Cedric, C., Sandra, S., Renaud, M., et al. (2015). Nanomolar inhibitors of Mycobacterium tuberculosis glutamine synthetase 1: synthesis, biological evaluation and X-ray crystallographic studies. Bioorganic & Medicinal Chemistry Letters, 25, 1455–1459.

    Article  Google Scholar 

  31. Chuanhe, Z., Fuping, L., Yanan, H., et al. (2007). Regulation of avilamycin biosynthesis in Streptomyces viridochromogenes: effects of glucose, ammonium ion, and inorganic phosphate. Applied Microbiology & Biotechnology, 73, 1031–1038.

    Google Scholar 

  32. Kang, I., Kim, J., Kim, E., & Lee, J. K. (2007). Cadaverine protects Vibrio vulnificus from superoxide stress. Journal of Microbiology and Biotechnology, 17(1), 176–179.

    CAS  Google Scholar 

  33. Kang, Y., Kim, Y., Jeon, C., & Park, W. (2006). Characterization of naphthalene-degrading Pseudomonas species isolated from pollutant-contaminated sites: oxidative stress during their growth on naphthalene. Journal of Microbiology and Biotechnology, 16(11), 1819–1825.

    CAS  Google Scholar 

  34. Khandaker, A. M., Huseyin, C. K., & Ahmet, K. (2014). Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process. Biochemical and Biophysical Research Communications, 444, 260–263.

    Article  Google Scholar 

  35. Bashistha, K., Hum, J., Narayan, N., et al. (2011). Superoxide dismutase (SOD) genes in Streptomyces peucetius: effects of SODs on secondary metabolites production. Microbiological Research, 166, 391–402.

    Article  Google Scholar 

  36. Bernhard, J. E., Natalie, T. S., Lothar, E., et al. (1994). Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology, 140, 1817–1828.

    Article  Google Scholar 

  37. Aranaz, I., Acosta, N., Fernandez-Valle, M. E., et al. (2015). Optimization of d-amino acid production catalyzed by immobilized multi-enzyme system in polyelectrolyte complex gel capsules. Journal of Molecular Catalysis B: Enzymatic, 121, 45–52.

    Article  CAS  Google Scholar 

  38. Vancurova, I., Vancura, A., Volc, J., et al. (1988). Isolation and characterization of valine dehydrogenase from Streptomyces aureofaciens. Journal of Bacteriology, 170(11), 5192–5196.

    CAS  Google Scholar 

  39. Lieu, T. N., Kien, T. N., Jan, K., et al. (1995). Purification and characterization of a novel valine dehydrogenase from Streptomyces aureofaciens. Biochimica et Biophysica Acta, 1251, 186–190.

    Article  Google Scholar 

  40. Moon, K. H., Abdelmegeed, M. A., & Song, B. J. (2007). Inactivation of cytosolic aldehyde dehydrogenase via S-nitrosylation in ethanol-exposed rat liver. FEBS Letters, 581(21), 3967–3972.

    Article  CAS  Google Scholar 

  41. Jose, R., Abdellah, A., & Henry, W. (2006). Characterization of E. coli tetrameric aldehyde dehydrogenases with atypical properties compared to other aldehyde dehydrogenases. Protein Science, 15, 1387–1396.

    Article  Google Scholar 

  42. Zhenhai, W., & Yeqing, S. (2005). Research process of Clp protease. Pharmaceutical Biotechnology, 12(6), 412–415.

    Google Scholar 

  43. Peng, Y., Youyuan, L., Jin, Z., et al. (2013). Direct proteomic mapping of Streptomyces avermitilis wild and industrial strain and insights into avermectin production. Journal of Proteomics, 79, 1–12.

    Article  Google Scholar 

  44. Hartl, F., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 295(5561), 1852–1858.

    Article  CAS  Google Scholar 

  45. Alejandra, A., Jose, A. F. H., Yovana, C., et al. (2015). ClpB dynamics is driven by its ATPase cycle and regulated by the DnaK system and substrate proteins. Biochemical Journal, 466, 561–570.

    Article  Google Scholar 

Download references

Acknowledgments

This research work was financially supported by the Agricultural Science and Technology Achievements Transformation Projects (2014GB2C100317), major projects supported by the Natural Science Foundation of Universities in Jiangsu Province (14KJA180001), and Jiangsu Province Agricultural Science and Technology Innovation Fund Projects (CX(14)2057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Zhi, W., Hu, Y. et al. Comparative Proteomic Analysis of Streptomyces aureochromogenes Under Different Carbon Sources and Insights into Polyoxin Production. Appl Biochem Biotechnol 180, 491–503 (2016). https://doi.org/10.1007/s12010-016-2112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2112-x

Keywords

Navigation