Skip to main content

Advertisement

Log in

Detoxification of Olive Mill Wastewater and Bioconversion of Olive Crop Residues into High-Value-Added Biomass by the Choice Edible Mushroom Hericium erinaceus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Environmentally acceptable disposal of olive cultivation residues (e.g., olive prunings; olive pruning residues (OLPR)) and olive mill wastes is of paramount importance since they are generated in huge quantities within a short time. Moreover, olive mill wastewater (OMW) or sludge-like effluents (“alperujo”; two-phase olive mill waste (TPOMW)) are highly biotoxic. Hericium erinaceus is a white-rot fungus which produces choice edible mushrooms on substrates rich in lignocellulosics, and its suitability for the treatment of olive by-products was examined for the first time. Fungal growth resulted in a notable reduction of OMW’s pollution parameters (i.e., 65 % decolorization, 47 % total phenolic reduction, and 52 % phytotoxicity decrease) and correlated with laccase and manganese peroxidase activities. Solid-state fermentation of various mixtures of OLPR, TPOMW, and beech sawdust (control) by H. erinaceus qualified OLPR in subsequent cultivation experiments, where it exhibited high mushroom yields and biological efficiency (31 %). Analyses of proximate composition and bioactive compound content revealed that mushrooms deriving from OLPR substrates showed significantly higher crude fat, total glucan, β-glucan, total phenolics, and ferric-reducing antioxidant potential values than the control. H. erinaceus demonstrated the potential to detoxify OMW and bioconvert OLPR into high-quality biomass, and hence, this fungus could be successfully exploited for the treatment of such by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hafidi, M., Amir, S., & Revel, J. S. (2005). Structural characterization of olive mill waste-water after aerobic digestion using elemental analysis, FTIR and C-13 NMR. Process Biochemistry, 40, 2615–2622.

    Article  CAS  Google Scholar 

  2. Ntougias, S., Gaitis, F., Katsaris, P., Skoulika, S., Iliopoulos, N., & Zervakis, G. I. (2013). The effects of olives harvest period and production year on olive mill wastewater properties—evaluation of Pleurotus strains as bioindicators of the effluent’s toxicity. Chemosphere, 92, 399–405.

    Article  CAS  Google Scholar 

  3. Baldrian, P., Zervakis, G. I., Merhautova, V., Ntougias, S., Ehaliotis, C., & Nerud, F. (2006). The use of hydroxyl-radical-generating systems for the treatment of olive mill wastewaters. Folia Microbiologica, 51, 337–341.

    Article  CAS  Google Scholar 

  4. Cara, C., Romero, I., Oliva, J. M., Sáez, F., & Castro, E. (2007). Liquid hot water pretreatment of olive tree pruning residues. Applied Biochemistry and Biotechnology, 137-140(1–12), 379–394.

    CAS  Google Scholar 

  5. El-Abbassi, A., Kiai, H., Raiti, J., & Hafidi, A. (2014). Application of ultrafiltration for olive processing wastewaters treatment. Journal of Cleaner Production, 65, 432–438.

    Article  CAS  Google Scholar 

  6. Spinelli, R., & Picchi, G. (2010). Industrial harvesting of olive tree pruning residue for energy biomass. Bioresource Technology, 101, 730–735.

    Article  CAS  Google Scholar 

  7. Cambria, M. T., Ragusa, S., Calabrese, V., & Cambria, A. (2011). Enhanced laccase production in white-rot fungus Rigidoporus lignosus by the addition of selected phenolic and aromatic compounds. Applied Biochemistry and Biotechnology, 163, 415–422.

    Article  CAS  Google Scholar 

  8. Koutrotsios, G., & Zervakis, G. I. (2014). Comparative examination of the olive mill wastewater biodegradation process by various wood-rot macrofungi. BioMed Research International, 482937. doi:10.1155/2014/482937.

  9. Tomati, U., Belardinelli, M., Galli, E., Iori, V., Capitani, D., Mannina, L., et al. (2004). NMR characterization of the polysaccharidic fraction from Lentinula edodes grown on olive mill waste waters. Carbohydrate Research, 339, 1129–1134.

  10. Yurekli, F., Yesilada, O., Yurekli, M., & Topcuoglu, S. F. (1999). Plant growth hormone production from olive oil mill and alcohol factory wastewaters by white rot fungi. World Journal of Microbiology and Biotechnology, 15, 503–505.

    Article  CAS  Google Scholar 

  11. Zervakis, G. I., Koutrotsios, G., & Katsaris, P. (2013). Composted versus raw olive mill waste as substrates for the production of medicinal mushrooms: an assessment of selected cultivation and quality parameters. BioMed Research International, 546830. doi:10.1155/2013/546830.

  12. Zervakis, G., Yiatras, P., & Balis, C. (1996). Edible mushrooms from olive mill wastes. International Biodeterioration and Biodegradation, 38, 237–243.

    Article  Google Scholar 

  13. Choi, B.-S., Sapkota, K., Choi, J.-H., Shin, C.-H., Kim, S., & Kim, S.-J. (2013). Herinase: a novel bi-functional fibrinolytic protease from the monkey head mushroom, Hericium erinaceum. Applied Biochemistry and Biotechnology, 170, 609–622.

    Article  CAS  Google Scholar 

  14. Friedman, M. (2015). Chemistry, nutrition and health-promoting properties of Hericium erinaceus (Lion’s mane) mushroom fruiting bodies and mycelia and their bioactive compounds. Journal of Agricultural and Food Chemistry, 63, 7108–7123.

    Article  CAS  Google Scholar 

  15. Wang, J. C., Hu, S. H., Wang, J. T., Chen, K. S., & Chia, Y. C. (2005). Hypoglycemic effect of extract of Hericium erinaceus. Journal of the Science of Food and Agriculture, 85, 641–646.

    Article  CAS  Google Scholar 

  16. Zhang, Z., Lv, G., Pan, H., Pandey, A., He, W., & Fan, L. (2012). Antioxidant and hepatoprotective potential of endo-polysaccharides from Hericium erinaceus grown on tofu whey. International Journal of Biological Macromolecules, 51, 1140–1146.

    Article  CAS  Google Scholar 

  17. Figlas, D., González Matute, R., & Curvetto, N. (2007). Cultivation of culinary-medicinal Lion’s mane mushroom Hericium erinaceus (Bull.: Fr.) Pers. (Aphyllophoromycetideae) on substrate containing sunflower seed hulls. International Journal of Medicinal Mushrooms, 9, 67–73.

    Article  Google Scholar 

  18. Hu, S. H., Wang, J. C., Wu, C. Y., Hsieh, S. L., Chen, K. S., Chang, S. J., et al. (2008). Bioconversion of agro wastes for the cultivation of the culinary-medicinal lion’s mane mushrooms Hericium erinaceus (Bull.: Fr.) Pers. and H. laciniatum (leers) banker (Aphyllophoromycetideae) in Taiwan. International Journal of Medicinal Mushrooms, 10, 385–398.

  19. Ko, H. G., Park, H. G., Park, S. H., Choi, C. W., Kim, S. H., & Park, W. M. (2005). Comparative study of mycelial growth and basidiomata formation in seven different species of the edible mushroom genus Hericium. Bioresource Technology, 96, 1439–1444.

    Article  CAS  Google Scholar 

  20. Heleno, S. A., Barros, L., Martins, A., Queiroz, M. J. R. P., Morales, P., Fernández-Ruiz, V., et al. (2015). Chemical composition, antioxidant activity and bioaccessibility studies in phenolic extracts of two Hericium wild edible species. LWT - Food Science and Technology, 63, 475–481.

  21. Rodrigues, D. M. F., Freitas, A. C., Rocha-Santos, T. A. P., Vasconcelos, M. W., Roriz, M., Rodríguez-Alcalá, L. M., et al. (2015). Chemical composition and nutritive value of Pleurotus citrinopileatus var. cornucopiae, P. eryngii, P. salmoneostramineus, Pholiota nameko and Hericium erinaceus. Journal of Food Science and Technology. doi:10.1007/s13197-015-1826-z.

  22. Ntougias, S., Baldrian, P., Ehaliotis, C., Nerud, F., Antoniou, T., Merhautova, V., et al. (2012). Biodegradation and detoxification of olive mill wastewater by selected strains of the mushroom genera Ganoderma and Pleurotus. Chemosphere, 88, 620–626.

  23. Kalogeropoulos, N., Yanni, A. E., Koutrotsios, G., & Aloupi, M. (2013). Bioactive microconstituents and antioxidant properties of wild edible mushrooms from the island of Lesvos, Greece. Food and Chemical Toxicology, 55, 378–385.

    Article  CAS  Google Scholar 

  24. Aggelis, G., Ehaliotis, C., Nerud, F., Stoychev, I., Lyberatos, G., & Zervakis, G. I. (2002). Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olives debiterring process. Applied Microbiology and Biotechnology, 59, 353–360.

    Article  CAS  Google Scholar 

  25. Zucconi, F., Pera, A., Forte, M., & De Bertoldi, M. (1981). Evaluating toxicity of immature compost. Biocycle, 22, 54–57.

    Google Scholar 

  26. Zervakis, G., Philippoussis, A., Ioannidou, S., & Diamantopoulou, P. (2001). Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiologica, 46, 231–234.

    Article  CAS  Google Scholar 

  27. Philippoussis, A., Zervakis, G., & Diamantopoulou, P. (2001). Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World Journal of Microbiology and Biotechnology, 17, 191–200.

    Article  CAS  Google Scholar 

  28. AOAC (1995). Official methods of analysis (16th ed.). Arlington: Association of Official Analytical Chemists.

    Google Scholar 

  29. Koutrotsios, G., Mountzouris, K. C., Chatzipavlidis, I., & Zervakis, G. I. (2014). Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi―assessment of their effect on the final product and spent substrate properties. Food Chemistry, 161, 127–135.

    Article  CAS  Google Scholar 

  30. Manzi, P., Marconi, S., Aguzzi, A., & Pizzoferrato, L. (2004). Commercial mushrooms: nutritional quality and effect of cooking. Food Chemistry, 84, 201–206.

    Article  CAS  Google Scholar 

  31. Arnous, A., Makris, D. P., & Kefalas, P. (2002). Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. Journal of Food Composition and Analysis, 15, 655–665.

    Article  CAS  Google Scholar 

  32. Tsioulpas, A., Dimou, D., Iconomou, D., & Aggelis, G. (2002). Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Bioresource Technology, 84, 251–257.

    Article  CAS  Google Scholar 

  33. Ntougias, S., Baldrian, P., Ehaliotis, C., Nerud, F., Merhautová, V., & Zervakis, G. I. (2015). Olive mill wastewater biodegradation potential of white-rot fungi—mode of action of fungal culture extracts and effects of ligninolytic enzymes. Bioresource Technology, 189, 121–130.

    Article  CAS  Google Scholar 

  34. Jaouani, A., Sayadi, S., Vanthournhout, M., & Penninckx, M. J. (2003). Potent fungi for decolourisation of olive oil mill wastewaters. Enzyme and Microbial Technology, 33, 802–809.

    Article  CAS  Google Scholar 

  35. Zerva, A., Zervakis, G.I., Christakopoulos, P., & Topakas, E. (2016). Degradation of olive mill wastewater by the induced extracellular ligninolytic enzymes of two wood-rot fungi. Journal of Environmental Management, (in press) doi:10.1016/j.jenvman.2016.02.042.

  36. Sayadi, S., Allouche, N., Jaoua, M., & Aloui, F. (2000). Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment. Process Biochemistry, 35, 725–735.

    Article  CAS  Google Scholar 

  37. D’Annibale, A., Ricci, M., Quaratino, D., Federici, F., & Fenice, M. (2004). Panus tigrinus efficiently removes colour, organic load and phenols from olive-mill wastewater. Research in Microbiology, 155, 596–603.

    Article  Google Scholar 

  38. Dias, A., Bezerra, R. M., & Pereira, A. N. (2004). Activity and elution profile of laccase during biological decolorization and dephenolization of olive mill wastewater. Bioresource Technology, 92, 7–13.

    Article  CAS  Google Scholar 

  39. Ruiz-Rodriguez, A., Soler-Rivas, C., Polonia, I., & Wichers, H. J. (2010). Effect of olive mill waste (OMW) supplementation to oyster mushrooms substrates on the cultivation parameters and fruiting bodies quality. International Biodeterioration and Biodegradation, 64, 638–645.

    Article  CAS  Google Scholar 

  40. Isikhuemhen, O. S., & Mikiashvili, N. A. (2009). Lignocellulolytic enzyme activity, substrate utilization, and mushroom yield by Pleurotus ostreatus cultivated on substrate containing anaerobic digester solids. Journal of Industrial Microbiology and Biotechnology, 36, 1353–1362.

    Article  CAS  Google Scholar 

  41. Philippoussis, A. N., Diamantopoulou, P. A., & Zervakis, G. I. (2003). Correlation of the properties of several lignocellulosic substrates to the crop performance of the shiitake mushroom Lentinula edodes. World Journal of Microbiology and Biotechnology, 19, 551–557.

  42. Llarena-Hernández, C. R., Largeteau, M. L., Ferrer, N., Regnault-Roger, C., & Savoie, J. M. (2014). Optimization of the cultivation conditions for mushroom production with European wild strains of Agaricus subrufescens and Brazilian cultivars. Journal of the Science of Food and Agriculture, 94, 77–84.

    Article  Google Scholar 

  43. Kalmis, E., Azbar, N., Yildiz, H., & Kalyoncu, F. (2008). Feasibility of using olive mill effluent (OME) as a wetting agent during the cultivation of oyster mushroom, Pleurotus ostreatus, on wheat straw. Bioresource Technology, 99, 164–169.

    Article  CAS  Google Scholar 

  44. Noble, R., Fermor, T. R., Lincoln, S., Dobrovin-Pennington, A., Evered, C., Mead, A., et al. (2003). Primordia initiation of mushroom (Agaricus bisporus) strains on axenic casing materials. Mycologia, 95, 620–629.

  45. Bonatti, M., Karnopp, P., Soares, H. M., & Furlan, S. A. (2004). Evaluation of Pleurotus ostreatus and P. sajor-caju nutritional characteristics when cultivated on different lignocellulosic wastes. Food Chemistry, 88, 425–428.

    Article  CAS  Google Scholar 

  46. Dong, Q., Jia, L. M., & Fang, J. N. (2006). A β-D-glucan isolated from the fruiting bodies of Hericium erinaceus and its aqueous conformation. Carbohydrate Research, 341, 791–795.

    Article  CAS  Google Scholar 

  47. Barros, L., Joao Ferreira, M., Queiros, B., Ferreira, I. C., & Baptista, P. (2007). Total phenol, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushroom and their antioxidant activities. Food Chemistry, 103, 413–419.

    Article  CAS  Google Scholar 

  48. Tsai, S. Y., Huang, S. J., Lo, S. H., Wu, T. P., Lian, P. Y., & Mau, J. L. (2009). Flavour components and antioxidant properties of several cultivated mushrooms. Food Chemistry, 113, 578–584.

    Article  CAS  Google Scholar 

  49. Ramírez-Anguiano, A. C., Santoyo, S., Reglero, G., & Soler-Rivas, C. (2007). Radical scavenging activities, endogenous oxidative enzymes and total phenols in edible mushrooms commonly consumed in Europe. Journal of the Science of Food and Agriculture, 87, 2272–2278.

  50. Dubost, N. J., Ou, B., & Beelman, R. B. (2007). Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chemistry, 105, 727–735.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by European Union (European Social Fund (ESF)) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)-Research Funding Program entitled “Metagenomics of ligninolytic microorganisms—bioconversion of plant by-products into high-added value products” (THALIS-UOA-MIS 377062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios I. Zervakis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koutrotsios, G., Larou, E., Mountzouris, K.C. et al. Detoxification of Olive Mill Wastewater and Bioconversion of Olive Crop Residues into High-Value-Added Biomass by the Choice Edible Mushroom Hericium erinaceus . Appl Biochem Biotechnol 180, 195–209 (2016). https://doi.org/10.1007/s12010-016-2093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2093-9

Keywords

Navigation