Skip to main content
Log in

Microbial Degradation of Chlorogenic Acid by a Sphingomonas sp. Strain

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to elucidate the metabolism of chlorogenic acid by environmental microbes, a strain of Sphingomonas sp. isolated from tobacco leaves was cultured under various conditions, and chlorogenic acid degradation and its metabolites were investigated. The strain converting chlorogenic acid was newly isolated and identified as a Sphingomonas sp. strain by 16S rRNA sequencing. The optimal conditions for growth and chlorogenic acid degradation were 37 °C and pH 7.0 with supplementation of 1.5 g/l (NH4)2SO4 as the nitrogen source and 2 g/l chlorogenic acid as the sole carbon source. The maximum chlorogenic acid tolerating capability for the strain was 5 g/l. The main metabolites were identified as caffeic acid, shikimic acid, and 3,4-dihydroxybenzoic acid based on gas chromatography-mass spectrometry analysis. The analysis reveals the biotransformation mechanism of chlorogenic acid in microbial cells isolated from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Whiting, G. C., & Carr, J. G. (1957). Chlorogenic acid metabolism in cider fermentation. Nature, 180, 1479–1479.

    Article  CAS  Google Scholar 

  2. Plumb, G. W., Garcia-Conesa, M. T., Kroon, P. A., Rhodes, M., Ridley, S., & Williamson, G. (1999). Metabolism of chlorogenic acid by human plasma, liver, intestine and gut microflora. Journal of the Science of Food and Agriculture, 79, 390–392.

    Article  CAS  Google Scholar 

  3. Morton, L. W., Caccetta, R. A.-A., Puddey, I. B., & Croft, K. D. (2000). Chemistry and biological effects of dietary phenolic compounds: relevance to cardiovascular disease. Clinical and Experimental Pharmacol and Physiology, 27, 152–159.

    Article  CAS  Google Scholar 

  4. Chu, Y.-F., Chen, Y., Black, R. M., Brown, P. H., Lyle, B. J., Liu, R. H., & Ou, B. (2011). Type 2 diabetes-related bioactivities of coffee: assessment of antioxidant activity, NF-κB inhibition, and stimulation of glucose uptake. Food Chemistry, 124, 914–920.

    Article  CAS  Google Scholar 

  5. Pietraforte, D., Castelli, M., Metere, A., Scorza, G., Samoggia, P., Menditto, A., & Minetti, M. (2006). Salivary uric acid at the acidic pH of the stomach is the principal defense against nitrite-derived reactive species: sparing effects of chlorogenic acid and serum albumin. Free Radical Biology and Medicine, 41, 1753–1763.

    Article  CAS  Google Scholar 

  6. Van Dam, R. M., & Hu, F. B. (2005). Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA, 294, 97–104.

    Article  Google Scholar 

  7. Huang, M.-T., Smart, R. C., Wong, C.-Q., & Conney, A. H. (1988). Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Research, 48, 5941–5946.

    CAS  Google Scholar 

  8. Feng, R., Lu, Y., Bowman, L. L., Qian, Y., Castranova, V., & Ding, M. (2005). Inhibition of activator protein-1, NF-κB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. Journal of Biological Chemistry, 280, 27888–27895.

    Article  CAS  Google Scholar 

  9. Kasai, H., Fukada, S., Yamaizumi, Z., Sugie, S., & Mori, H. (2000). Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food and Chemical Toxicology, 38, 467–471.

    Article  CAS  Google Scholar 

  10. Chlopčíková, Š., Psotová, J., Miketová, P., Soušek, J., Lichnovský, V., & Šimánek, V. (2004). Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes part II. caffeic, chlorogenic and rosmarinic acids. Phytotherapy Research, 18, 408–413.

    Article  Google Scholar 

  11. Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56, 317–333.

    Article  CAS  Google Scholar 

  12. Azuma, K., Ippoushi, K., Nakayama, M., Ito, H., Higashio, H., & Terao, J. (2000). Absorption of chlorogenic acid and caffeic acid in rats after oral administration. Journal of Agricultural and Food Chemistry, 48, 5496–5500.

    Article  CAS  Google Scholar 

  13. Olthof, M. R., Hollman, P. C. H., Buijsman, M. N. C. P., Van Amelsvoort, J. M. M., & Katan, M. B. (2003). Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans.  The Journal of Nutrition, 133, 1806–1814.

    CAS  Google Scholar 

  14. Gonthier, M. P., Remesy, C., Scalbert, A., Cheynier, V., Souquet, J. M., Poutanen, K., & Aura, A. M. (2006). Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomedicine and Pharmacotherapy, 60, 536–540.

    Article  CAS  Google Scholar 

  15. Farrell, T. L., Dew, T. P., Poquet, L., Hanson, P., & Williamson, G. (2011). Absorption and metabolism of chlorogenic acids in cultured gastric epithelial monolayers. Drug Metabolism and Disposition, 39, 2338–2346.

    Article  CAS  Google Scholar 

  16. Couteau, D., Mccartney, A. L., Gibson, G. R., Williamson, G., & Faulds, C. B. (2001). Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. Journal of Applied Microbiology, 90, 873–881.

    Article  CAS  Google Scholar 

  17. Peppercorn, M. A., & Goldman, P. (1971). Caffeic acid metabolism by bacteria of the human gastrointestinal tract. Journal of Bacteriology, 108, 996–1000.

    CAS  Google Scholar 

  18. Tomas-Barberan, F., García-Villalba, R., Quartieri, A., Raimondi, S., Amaretti, A., Leonardi, A., & Rossi, M. (2014). In vitro transformation of chlorogenic acid by human gut microbiota. Molecular Nutrition & Food Research, 58, 1122–1131.

    Article  CAS  Google Scholar 

  19. Parkar, S. G., Trower, T. M., & Stevenson, D. E. (2013). Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe, 23, 12–19.

    Article  CAS  Google Scholar 

  20. Raimondi, S., Anighoro, A., Quartieri, A., Amaretti, A., Tomás-Barberán, F. A., Rastelli, G., & Rossi, M. (2015). Role of bifidobacteria in the hydrolysis of chlorogenic acid. MicrobiologyOpen, 4, 41–52.

    Article  CAS  Google Scholar 

  21. Stolz, A. (2008). Molecular characteristics of xenobiotic-degrading sphingomonads. Applied Microbiology and Biotechnology, 81, 793–811.

    Article  Google Scholar 

  22. White, D. C., Sutton, S. D., & Ringelberg, D. B. (1996). The genus Sphingomonas: physiology and ecology. Current Opinion in Biotechnology, 7, 301–306.

    Article  CAS  Google Scholar 

  23. Lou, Z., Wang, H., Zhu, S., Ma, C., & Wang, Z. (2011). Antibacterial activity and mechanism of action of chlorogenic acid. Journal of Food Science, 76, M398–M403.

    Article  CAS  Google Scholar 

  24. Karunanidhi, A., Thomas, R., Van Belkum, A., & Neela, V. (2013). In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia including the trimethoprim/sulfamethoxazole resistant strain. BioMed Research International, 2013, 7.

    Article  Google Scholar 

  25. Gauthier, L., Bonnin-Verdal, M.-N., Marchegay, G., Pinson-Gadais, L., Ducos, C., Richard-Forget, F., & Atanasova-Penichon, V. (2016). Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: new insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. International Journal of Food Microbiology, 221, 61–68.

    Article  CAS  Google Scholar 

  26. Ludwig, I. A., Paz De Peña, M., Concepción, C., & Alan, C. (2013). Catabolism of coffee chlorogenic acids by human colonic microbiota. BioFactors, 39, 623–632.

    Article  CAS  Google Scholar 

  27. Sánchez‐Maldonado, A., Schieber, A., & Gänzle, M. (2011). Structure–function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. Journal of Applied Microbiology, 111, 1176–1184.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Chinese National Science Foundation for Excellent Young Scholars (31422004), the Chinese National Natural Science Foundation (31270154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Tang.

Additional information

Yuping Ma and Xiaoyu Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Wang, X., Nie, X. et al. Microbial Degradation of Chlorogenic Acid by a Sphingomonas sp. Strain. Appl Biochem Biotechnol 179, 1381–1392 (2016). https://doi.org/10.1007/s12010-016-2071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2071-2

Keywords

Navigation