The Online Morphology Control and Dynamic Studies on Improving Vitamin B12 Production by Pseudomonas denitrificans with Online Capacitance and Specific Oxygen Consumption Rate


The relationship between the morphological character of Pseudomonas denitrificans and vitamin B12 synthesis based on real-time capacitance measurement and online specific oxygen consumption rate (Q O2) control was established for enhancing vitamin B12 production. Results demonstrated that the threshold Q O2 value lower than 2.0 mmol/gDCW/l would greatly stimulate the state transfer from the cell number growth phase to the cell elongation phase and promote rapid vitamin B12 biosynthesis, while the vitamin B12 biosynthesis rate could also be inhibited when the rate of cell’s length-to-width ratio (ratio-LW) was higher than 10:1. Furthermore, the optimal morphology controlling strategy was achieved based on online Q O2 control, which increases the appropriate active cell numbers at the former phase, and then control the elongation of ratio-LW no more than 10:1 at the vitamin B12 biosynthesis phase. The maximal vitamin B12 production reached 239.7 mg/l at 168 h, which was improved by 14.7 % compared with the control (208 mg/l). This online controlling strategy would be effectively applied for improving industrial vitamin B12 fermentation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Martens, J. H., Barg, H., Warren, M. J., & Jahn, D. (2002). Microbial production of vitamin B12. Applied Microbiology and Biotechnology, 58, 275–285.

    CAS  Article  Google Scholar 

  2. 2.

    Xia, W., Chen, W., Peng, W. F., & Li, K. T. (2015). Industrial vitamin B12 production by Pseudomonas denitrificans using maltose syrup and corn steep liquor as the cost-effective fermentation substrates. Bioprocess and Biosystems Engineering, 38, 1065–1073.

    CAS  Article  Google Scholar 

  3. 3.

    Burgess, C. M., Smid, E. J., & Sinderen, D. (2009). Bacterial vitamin B2, B11 and B12 overproduction: an overview. International Journal of Food Microbiology, 133, 1–7.

    CAS  Article  Google Scholar 

  4. 4.

    Wang, P., Hang, Z. Z., Jiao, Y., Liu, S., & Wang, Y. (2015). Improved propionic acid and 5,6-dimethylbenzimidazole control strategy for vitamin B12 fermentation by Propionibacterium freudenreichii. Journal of Biotechnology, 193, 123–129.

    CAS  Article  Google Scholar 

  5. 5.

    Gu, Q., Zhang, C., Song, D., Li, P., & Zhu, X. (2015). Enhancing vitamin B12 content in soy-yogurt by Lactobacillus reuteri. International Journal of Food Microbiology, 206, 56–59.

    CAS  Article  Google Scholar 

  6. 6.

    Cheng, X., Chen, W., Peng, W. F., & Li, K. T. (2014). Improved vitamin B12 fermentation process by adding rotenone to regulate the metabolism of Pseudomonas denitrificans. Applied Biochemistry and Biotechnology, 173, 673–681.

    CAS  Article  Google Scholar 

  7. 7.

    Wang, Z. J., Zhang, Y. M., Wang, H. Y., Chu, J., Zhuang, Y. P., & Zhang, S. L. (2010). Improved vitamin B12 production by stepwise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Bioresource Technology, 101, 2845–2852.

    CAS  Article  Google Scholar 

  8. 8.

    Kivilcimdan, M. C., Dogan, O., & Sanin, F. D. (2015). Effect of oxygen tension and medium components on monomer distribution of Alginate. Applied Biochemistry and Biotechnology, 176(3), 875–891.

    Article  Google Scholar 

  9. 9.

    Blewett, T. A., Robertson, L. M., Maclatchy, D. L., & Wood, C. M. (2013). Impact of environmental oxygen, exercise, salinity, and metabolic rate on the uptake and tissue-specific distribution of 17alpha-ethynylestradiol in the euryhaline teleost Fundulus heteroclitus. Aquatic Toxicology, 138, 43–51.

    Article  Google Scholar 

  10. 10.

    Rowe, G. E., Margaritis, A., & Wei, N. (2003). Specific oxygen uptake rate variations during batch fermentation of Bacillus thuringiensis subspecies kurstaki HD-1. Biotechnology Progress, 19, 1439–1443.

    CAS  Article  Google Scholar 

  11. 11.

    Ibrahim, D., Weloosamy, H., & Lim, S. H. (2015). Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hyphae and its pectinase production in submerged fermentation. World Journal of Biological Chemistry, 6, 265–271.

    Article  Google Scholar 

  12. 12.

    Cui, F. J., Chen, X. X., Liu, W. M., Sun, W. J., Huo, S., & Yang, Y. (2016). Control of Grifola frondosa morphology by agitation and aeration for improving mycelia and exo-polymer production. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-016-2006-y.

    Google Scholar 

  13. 13.

    Li, L., Wang, Z. J., Chen, X. J., Chu, J., Zhuang, Y. P., & Zhang, S. L. (2014). Optimization of polyhydroxyalkanoates fermentations with on-line capacitance measurement. Bioresource Technology, 156, 216–221.

    CAS  Article  Google Scholar 

  14. 14.

    Shantini, K., Yahya, A. R., & Amirul, A. A. (2015). Influence of feeding and controlled dissolved oxygen level on the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus sp. USMAA2-4 and its characterization. Applied Biochemistry and Biotechnology, 176(5), 1315–1334.

    CAS  Article  Google Scholar 

  15. 15.

    Kim, J. H., Lim, J. S., Kim, C. H., & Kim, S. W. (2005). Morphology and kinetics studies on cephalosporin C production by Cephalosporium acremonium M25 in a 30-l bioreactor using a mixture of inocula. Letters in Applied Microbiology, 40, 307–311.

    CAS  Article  Google Scholar 

  16. 16.

    Lee, M. S., Lim, J. S., Kim, C. H., Oh, K. K., Yang, D. R., & Kim, S. W. (2001). Enhancement of cephalosporin C production by cultivation of Cephalosporium acremonium M25 using a mixture of inocula. Letters in Applied Microbiology, 32, 402–406.

    CAS  Article  Google Scholar 

  17. 17.

    Guo, Q., Chu, J., Zhuang, Y., & Gao, Y. (2015). Controlling the feed rate of propanol to optimize erythromycin fermentation by on-line capacitance and oxygen uptake rate measurement. Bioprocess and Biosystems Engineering. doi:10.1007/s00449-015-1509-1.

    Google Scholar 

  18. 18.

    Knabben, I., Regestein, L., Schauf, J., Steinbusch, S., & Buchs, J. (2011). Linear correlation between online capacitance and offline biomass measurement up to high cell densities in Escherichia coli fermentations in a pilot-scale pressurized bioreactor. Journal of Microbiology and Biotechnology, 21, 204–211.

    CAS  Article  Google Scholar 

  19. 19.

    Maskow, T., Rollich, A., Fetzer, I., Yao, J., & Harms, H. (2008). Observation of non-linear biomass-capacitance correlations: reasons and implications for bioprocess control. Biosensors & Bioelectronics, 24, 123–128.

    CAS  Article  Google Scholar 

  20. 20.

    Yuan, D., Rao, K., Varanasi, S., & Relue, P. (2012). A viable method and configuration for fermenting biomass sugars to ethanol using native Saccharomyces cerevisiae. Bioresource Technology, 117, 92–98.

    CAS  Article  Google Scholar 

  21. 21.

    Knabben, I., Regestein, L., Grumbach, C., Steinbusch, S., Kunze, G., & Buchs, J. (2010). Online determination of viable biomass up to very high cell densities in Arxula adeninivorans fermentations using an impedance signal. Journal of Biotechnology, 149, 60–66.

    CAS  Article  Google Scholar 

  22. 22.

    November, E. J., & Van, J. F. (2001). On-line viable biomass measurement and estimation of the specific growth rate of activated sludge from municipal wastewater treatment. Water Science and Technology, 43, 97–104.

    CAS  Google Scholar 

  23. 23.

    Papagianni, M., & Mattey, M. (2006). Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology. Microbial Cell Factories, 5, 3–15.

    Article  Google Scholar 

  24. 24.

    Li, Z. J., Shukla, V., Fordyce, A. P., Pedersen, A. G., Wenger, K. S., & Marten, M. R. (2000). Fungal morphology and fragmentation behavior in a fed-batch Aspergillus oryzae fermentation at the production scale. Biotechnology and Bioengineering, 70, 300–312.

    CAS  Article  Google Scholar 

  25. 25.

    Li, K. T., Liu, D. H., Li, Y. L., Chu, J., Wang, Y. H., Zhuang, Y. P., & Zhang, S. L. (2008). Improved large-scale production of vitamin B12 by Pseudomonas denitrificans with betaine feeding. Bioresource Technology, 99, 8516–8520.

    CAS  Article  Google Scholar 

  26. 26.

    Li, K. T., Liu, D. H., Li, Y. L., Chu, J., Wang, Y. H., Zhuang, Y. P., & Zhang, S. L. (2008). An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans. Bioprocess and Biosystems Engineering, 31, 605–610.

    CAS  Article  Google Scholar 

  27. 27.

    Xiong, Q., Xu, Q., Gu, S., & Li, S. (2012). Controlling the morphology of filamentous fungi for optimization of fermentation process. Sheng Wu Gong Cheng Xue Bao, 28, 178–190.

    CAS  Google Scholar 

Download references


This work was financially supported by a grant from the National Natural Science Foundation of China (Grant No. 31200024), the Royal DSM, and partially supported by the NOW-MoST Joint Program (2013DFG32630).

Author information



Corresponding author

Correspondence to Ze-Jian Wang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.


The 16S rDNA gene sequencing analysis for the producing strain pseudomonas denitrificans (PDF 456 kb)


The whole-genome scan analysis of the producing strain pseudomonas denitrificans (DOCX 3211 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, ZJ., Shi, Hl. & Wang, P. The Online Morphology Control and Dynamic Studies on Improving Vitamin B12 Production by Pseudomonas denitrificans with Online Capacitance and Specific Oxygen Consumption Rate. Appl Biochem Biotechnol 179, 1115–1127 (2016).

Download citation


  • Morphology
  • Capacitance
  • Specific oxygen consumption rate
  • Vitamin B12
  • Pseudomonas denitrificans