Skip to main content
Log in

Biomimetic Mineralization of the Alginate/Gelatin/Calcium Oxalate Matrix for Immobilization of Pectinase: Influence of Matrix on the Pectinolytic Activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pectinases catalyze the degradation of pectic substances and are used in several processes, mainly in food and textile industries. In this study, a biomimetic matrix of alginate/gelatin/calcium oxalate (AGOCa) was synthesized for the in situ immobilization via encapsulation of crude pectinase from Aspergillus niger ATCC 9642, obtaining an immobilization efficiency of about 61.7 %. To determine the performance of AGOCa matrix, this was compared to control matrices of alginate/calcium oxalate (AOxal) and alginate/water (ACa). By the evaluation of pH and temperature effects on the enzyme activity, it was observed an increase on pectinolytic activity for both three tested matrices with an increase on pH and temperature. The kinetic parameters for pectinase immobilized in the three matrices were determined using citric pectin as substrate. Values of K m of 0.003, 0.0013, and 0.0022 g mL−1 and V max of 3.85, 4.32, and 3.17 μmol min−1 g−1 for AGOCa, AOxal, and ACa matrices were obtained, respectively. After 33 days of storage, the pectinase immobilized in the three different matrices kept its initial activity, but that immobilized in AGOCa presented high stability to the storage with a relative activity of about 160 %. The enzyme immobilized in AGOCa, AOxal, and ACa could be used in 10, 8, and 7 cycles, respectively, keeping 40 % of its initial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jayani, R., Saxena, S., & Gupta, R. (2005). Microbial pectinolytic enzymes: a review. Process Biochemistry, 40, 2931–2944.

    Article  CAS  Google Scholar 

  2. Pedrolli, D., Monteiro, A., Gomes, E., & Carmona, E. (2009). Pectin and pectinases: production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnology Journal, 3, 9–18.

    Article  CAS  Google Scholar 

  3. Kashyap, D. R., Vohra, P. K., & Tewari, R. (2001). Application of pectinases in the commercial sector: a review. Bioresource Technology, 77, 215–227.

    Article  CAS  Google Scholar 

  4. Coghetto, C., Scherer, P., Silva, M., Golunski, S., Pergher, S., de Oliveira, D., Oliveira, V., & Treichel, H. (2012). Natural montmorillonite as support for the immobilization of inulinase from Kluyveromyces marxianus NRRL Y-7571. Biocatalysis and Agricultural Biotechnology, 1, 284–289.

    Article  CAS  Google Scholar 

  5. Wu, R., He, B., Zhao, B., Qian, L., & Li, X. (2013). Immobilization of pectinase on oxidized pulp fiber and its application in whitewater treatment. Carbohydrate Polymers, 97, 523–529.

    Article  CAS  Google Scholar 

  6. Datta, S., Christena, L., & Rajaram, Y. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3, 1–9.

    Article  Google Scholar 

  7. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  8. Buga, M., Ibrahim, S., & Nok, A. (2010). Physico-chemical characteristics of immobilized polygalacturonase from Aspergillus niger (SA6). African Journal of Biotechnology, 9(52), 8934–8943.

    CAS  Google Scholar 

  9. Abdelmajeed, N., Kheli, O., & Danial, E. (2012). Immobilization technology for enhancing bio-products industry. African Journal of Biotechnology, 11(71), 13528–13539.

    Article  CAS  Google Scholar 

  10. Fernandez-Arrojo, L., Rodriguez-Colinas, B., Gutierrez-Alonso, P., Fernandez-Lobato, M., Alcalde, M., Ballesteros, A., & Plou, F. (2013). Dried alginate-entrapped enzymes (DALGEEs) and their application to the production of fructooligosaccharides. Process Biochemistry, 48, 677–682.

    Article  CAS  Google Scholar 

  11. Rehman, H., Aman, A., Zohra, R., & Qader, S. (2014). Immobilization of pectin degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a support. Carbohydrate Polymers, 102, 622–626.

    Article  Google Scholar 

  12. Esawy, M., Gamal, A., Kamel, Z., Ismail, A., & Abdel-Fattah, A. (2013). Evaluation of free and immobilized Aspergillus niger NRC1ami pectinase applicable in industrial processes. Carbohydrate Polymers, 92, 1463–1469.

    Article  CAS  Google Scholar 

  13. Bogra, P., Kumar, A., Kuhar, K., Panwar, S., & Singh, R. (2013). Immobilization of tomato (Lycopersicon esculentum) pectinmethylesterase in calcium alginate beads and its application in fruit juice clarification. Biotechnology Letters, 35, 1895–1900.

    Article  CAS  Google Scholar 

  14. Zhang, L., Jiang, Y., Shi, J., Sun, X., Li, J., & Jiang, Z. (2008). Biomimetic polymer-inorganic hybrid microcapsules for yeast alcohol dehydrogenase encapsulation. Reactive and Functional Polymers, 68, 1507–1515.

    Article  CAS  Google Scholar 

  15. Weiner, S., & Dove, P. (2003). An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry, 54(1), 1–29.

    Article  CAS  Google Scholar 

  16. Lu, Z., Zhang, J., Ma, Y., Song, S., & Gu, W. (2012). Biomimetic mineralization of calcium carbonate/carboxymethylcellulose. Materials Science and Engineering, 32, 1982–1987.

    Article  CAS  Google Scholar 

  17. Shen, Q., Yanga, R., Hua, X., Ye, F., Zhang, W., & Zhao, W. (2011). Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochemistry, 46, 1565–1571.

    Article  CAS  Google Scholar 

  18. Betancor, L., & Luckarift, H. (2008). Bioinspired enzyme encapsulation for Biocatalysis. Trends in Biotechnology, 26(10), 566–572.

    Article  CAS  Google Scholar 

  19. Bustamante-Vargas, C. E., Mignoni, M. L., de Oliveira, D., Venquiaruto, L. D., Valduga, E., Toniazzo, G., & Dallago, R. M. (2015). Synthesis of a hybrid polymer-inorganic biomimetic support incorporating in situ pectinase from Aspergillus niger ATCC 9642. Bioprocess and Biosystems Engineering, 8, 1569–1577.

    Article  Google Scholar 

  20. Gomes, J., Zeni, J., Cence, K., Toniazzo, G., Treichel, H., & Valduga, E. (2011). Evaluation of production and characterization of polygalacturonase by Aspergillus niger ATCC 9642. Food and Bioproducts Processing, 89(4), 281–287.

    Article  CAS  Google Scholar 

  21. Miller, L. (1959). Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Analytical Chemistry, 37, 426–428.

    Article  Google Scholar 

  22. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658–666.

    Article  CAS  Google Scholar 

  23. Pifferi, P., & Spagna, G. (1987). The immobilization of endopolygalacturonase on γ-alumina. Journal of Molecular Catalysis B: Enzymatic, 42, 137–149.

    Article  CAS  Google Scholar 

  24. Spagna, G., PiVeri, P. G., & Gilioli, E. (1995). Immobilization of a pectinlyase from Aspergillus niger for application in food technology. Enzyme and Microbial Technology, 17, 729–738.

    Article  CAS  Google Scholar 

  25. Wang, B., Cheng, F., Lu, Y., Ge, W., Zhang, M., & Yue, B. (2013). Immobilization of pectinase from Penicillium oxalicum F67 ontomagnetic cornstarch microspheres: characterization and application in juice production. Journal of Molecular Catalysis B: Enzymatic, 97, 137–143.

    Article  CAS  Google Scholar 

  26. Wu, R., He, B., Zhao, G., & Li, X. (2014). Immobilization of pectinase on polyethyleneimine-coated pulp fiber for treatment of whitewater from papermaking. Journal of Molecular Catalysis B: Enzymatic, 99, 163–168.

    Article  CAS  Google Scholar 

  27. Lei, Z., Bi, S., Hu, B., & Yang, H. (2007). Combined magnetic and chemical covalent immobilization of pectinase on composites membranes improves stability and activity. Food Chemistry, 105, 889–896.

    Article  CAS  Google Scholar 

  28. Yang, J., Ma, X., Zhang, Z., Chen, B., Li, S., & Wang, G. (2010). Lipase immobilized by modification-coupled and adsorption-cross-linking methods: a comparative study. Biotechnology Advances, 28, 644–650.

    Article  CAS  Google Scholar 

  29. Yigitoglu, M., & Temoçin, Z. (2010). Immobilization of Candida rugosa lipase on glutaraldehyde-activated polyester fiber and its application for hydrolysis of some vegetable oils. Journal of Molecular Catalysis B: Enzymatic, 66, 130–135.

    Article  CAS  Google Scholar 

  30. Bustamante-Vargas, C. E., de Oliveira, D., Nyari, N. L. D., Valduga, E., Soares, M. B. A., Backes, G. T., & Dallago, R. M. (2015). In situ immobilization of commercial pectinase in rigid polyurethane foam and application in the hydrolysis of pectic oligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 122, 35–43.

    Article  CAS  Google Scholar 

  31. Bahrami, A., & Hejazi, P. (2013). Electrostatic immobilization of pectinase on negatively charged AOT-Fe3O4 nanoparticle. Journal of Molecular Catalysis B: Enzymatic, 93, 1–7.

    Article  CAS  Google Scholar 

  32. Reham, H., Aman, A., Silipo, A., Qader, S., Molinaro, A., & Ansari, A. (2014). Degradation of complex carbohydrate: immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support. Food Chemistry, 139, 1081–1086.

    Google Scholar 

  33. Won, K., Sangbum, K., Kwang-Je, K., Hong, P., & Sang-Ji, M. (2005). Optimization of lipase entrapment in Ca-alginate gel bead. Process Biochemistry, 40, 2149–2154.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank URI-Erechim, CNPq, FAPERGS, and CAPES for the infrastructure and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cindy Elena Bustamante-Vargas or Rogério Marcos Dallago.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustamante-Vargas, C.E., de Oliveira, D., Valduga, E. et al. Biomimetic Mineralization of the Alginate/Gelatin/Calcium Oxalate Matrix for Immobilization of Pectinase: Influence of Matrix on the Pectinolytic Activity. Appl Biochem Biotechnol 179, 1060–1072 (2016). https://doi.org/10.1007/s12010-016-2050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2050-7

Keywords

Navigation