Skip to main content
Log in

Anaerobic Mesophilic Codigestion of Rice Straw and Chicken Manure: Effects of Organic Loading Rate on Process Stability and Performance

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To investigate the effects of organic loading rate (OLR) on performance and stability of mesophilic co-digestion of rice straw (RS) and chicken manure (CM), benchtop experiments (40 L) were carried out at OLRs of 3.0, 3.6, 4.2, 4.8, 6.0, 8.0, and 12.0 kg volatile solid (VS)/(m3·day) with volatile solid (VS) ratio of 1:1 (RS/CM) which was based on batch tests. Anaerobic co-digestion was slightly and severely inhibited by the accumulation of ammonia when the digester was overloaded at an OLR of 6 and 12 kg VS/(m3·day), respectively. The recommended OLR for co-digestion is 4.8 kg VS/(m3·day), which corresponds to average specific biogas production (SBP) of 380 L/kg VS and volumetric biogas production rate (VBPR) of 1.8 m3/(m3·day). An OLR of 6–8 kg VS/(m3·d) with SBP of 360–440 L/kg VS and VBPR of 2.1–3.5 m3/(m3·day) could be considered, if an Anaerobic digestion (AD) system assisted by in situ removal of ammonia was adopted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

ADE:

Anaerobic digestion efficiency

ALK:

Total alkalinity

CM:

Chicken manure

FAN:

Free ammonia

FVFA:

Free volatile fatty acids

MY:

Methane yield

MC:

Methane content

OLR:

Organic loading rate

RS:

Rice straw

SBP:

Specific biogas production

SMP:

Specific methane production

SCOD:

Soluble chemical oxygen demand

TMP:

Theoretical methane potential

TMC:

Theoretical methane content

TVFA:

Total volatile fatty acids

TAN:

Total ammonia

TS:

Total solid

VBPR:

Volumetric biogas production rate

VMPR:

Volumetric methane production rate

VFA:

Volatile fatty acids

VS:

Volatile solid

References

  1. Jiang, D., Zhuang, D. F., Fu, J. Y., Huang, Y. H., & Wen, K. G. (2012). Bioenergy potential from crop residues in China: availability and distribution. Renewable and Sustainable Energy Reviews, 16, 1377–1382.

    Article  Google Scholar 

  2. Tian, Y. S. (2012). Potential assessment on biogas production by using livestock manure of large-scale farm in China. Transactions of the Chinese Society of Agricultural Engineering, 28, 230–234.

    Google Scholar 

  3. Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315, 804–807.

    Article  CAS  Google Scholar 

  4. Weiland, P. (2010). Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85, 849–860.

    Article  CAS  Google Scholar 

  5. Chen, X. H., Zhang, Y. L., Gu, Y., Liu, Z. G., Shen, Z., Chu, H. Q., & Zhou, X. F. (2014). Enhancing methane production from rice straw by extrusion pretreatment. Applied Energy, 122, 34–41.

    Article  CAS  Google Scholar 

  6. Yu, L., Ma, J. W., Frear, C., Zhao, Q. B., Dillon, R., Li, X. J., & Chen, S. L. (2013). Multiphase modeling of settling and suspension in anaerobic digester. Applied Energy, 111, 28–39.

    Article  CAS  Google Scholar 

  7. Wang, X. J., Yang, G. H., Li, F., Feng, Y. Z., Ren, G. X., & Han, X. H. (2013). Evaluation of two statistical methods for optimizing the feeding composition in anaerobic co-digestion: Mixture design and central composite design. Bioresource Technology, 131, 172–178.

    Article  CAS  Google Scholar 

  8. Wang, X. J., Yang, G. H., Feng, Y. Z., Ren, G. X., & Han, X. H. (2012). Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresource Technology, 120, 78–83.

    Article  CAS  Google Scholar 

  9. Li, D., Sun, Y., Guo, Y., Yuan, Z., Wang, Y. and Zhen, F. (2013) Continuous anaerobic digestion of food waste and design of digester with lipid removal. Environmental Technology, 1–9.

  10. Deublein, D.,& Steinhauser, A. (2008) Biogas from waste and renewable resources. ed. Wiley Online Library.

  11. APHA. (1998) Standard Methods for the Examination of Water and Wastewater. 21st Edition[R], American Public Health Association.

  12. He, Y. L. (1998) Anaerobic biological treatment of wastewater. ed. China Light Industry Press, Beijing.

  13. Dong, L., Zhenhong, Y., Yongming, S., & Longlong, M. (2010). Evaluation of pretreatment methods on harvesting hydrogen producing seeds from anaerobic digested organic fraction of municipal solid waste (OFMSW). International Journal of Hydrogen Energy, 35, 8234–8240.

    Article  Google Scholar 

  14. Buswell, A. M., & Mueller, H. F. (1952). Mechanism of methane fermentation. Industrial and Engineering Chemistry, 44, 550–552.

    Article  CAS  Google Scholar 

  15. Cuetos, M. J., Fernandez, C., Gomez, X., & Moran, A. (2011). Anaerobic co-digestion of swine manure with energy crop residues. Biotechnology Bioprocess Engineering, 16, 1044–1052.

    Article  CAS  Google Scholar 

  16. Xie, S., Lawlor, P. G., Frost, J. P., Hu, Z., & Zhan, X. (2011). Effect of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of concentrated pig manure and grass silage. Bioresource Technology, 102, 5728–5733.

    Article  CAS  Google Scholar 

  17. Xavier, C. A. N., Moset, V., Wahid, R., & Moller, H. B. (2015). The efficiency of shredded and briquetted wheat straw in anaerobic co-digestion with dairy cattle manure. Biosystems Engineering, 139, 16–24.

    Article  Google Scholar 

  18. Svensson, L. M., Bjornsson, L., & Mattiasson, B. (2007). Enhancing performance in anaerobic high-solids stratified bed digesters by straw bed implementation. Bioresource Technology, 98, 46–52.

    Article  CAS  Google Scholar 

  19. Niu, Q., Qiao, W., Qiang, H., Hojo, T., & Li, Y.-Y. (2013). Mesophilic methane fermentation of chicken manure at a wide range of ammonia concentration: Stability, inhibition and recovery. Bioresource Technology, 137, 358–367.

    Article  CAS  Google Scholar 

  20. Lehtomaki, A., Huttunen, S., & Rintala, J. A. (2007). Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio. Resources, Conservation and Recycling, 51, 591–609.

    Article  Google Scholar 

  21. Jagadabhi, P. S., Lehtomaki, A., & Rintala, J. (2008). Co-digestion of grass silage and cow manure in a cstr by re-circulation of alkali treated solids of the digestate. Environmental Technology, 29, 1085–1093.

    Article  CAS  Google Scholar 

  22. Comino, E., Rosso, M., & Riggio, V. (2010). Investigation of increasing organic loading rate in the co-digestion of energy crops and cow manure mix. Bioresource Technology, 101, 3013–3019.

    Article  CAS  Google Scholar 

  23. Xie, S., Wu, G., Lawlor, P. G., Frost, J. P., & Zhan, X. (2012). Methane production from anaerobic co-digestion of the separated solid fraction of pig manure with dried grass silage. Bioresource Technology, 104, 289–297.

    Article  CAS  Google Scholar 

  24. Dogan, T., Ince, O., Oz, N. A., & Ince, B. K. (2005). Inhibition of volatile fatty acid production in granular sludge from a UASB reactor. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 40, 633–644.

    Article  CAS  Google Scholar 

  25. Ariunbaatar, J., Scotto Di Perta, E., Panico, A., Frunzo, L., Esposito, G., Lens, P. N. L., & Pirozzi, F. (2015). Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste. Waste Management, 38, 388–398.

    Article  CAS  Google Scholar 

  26. Hansen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic digestion of swine manure: inhibition by ammonia. Water Research, 32, 5–12.

    Article  CAS  Google Scholar 

  27. Pöschl, M., Ward, S., & Owende, P. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy, 87, 3305–3321.

    Article  Google Scholar 

  28. Callaghan, F. J., Wase, D. A. J., Thayanithy, K., & Forster, C. F. (2002). Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy, 22, 71–77.

    Article  CAS  Google Scholar 

  29. Kroeker, E. J., Schulte, D. D., Sparling, A. B., & Lapp, H. M. (1979). Anaerobic treatment process stability. Journal - Water Pollution Control Federation, 51, 718–727.

    CAS  Google Scholar 

  30. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99, 4044–4064.

    Article  CAS  Google Scholar 

  31. Wang, G., & Wang, D. I. C. (1984). Elucidation of growth-inhibition and acetic-acid production by clostridium-thermoaceticum. Applied and Environmental Microbiology, 47, 294–298.

    CAS  Google Scholar 

  32. Koster, I. W., & Lettinga, G. (1983) Ammonium Toxicity in Anaerobic Digestion. Proceeding of Anaerobic Wastewater Treatment Symposium, pp. 553. The Netherland, Hague.

  33. Hashimoto, A. G. (1986). Ammonia inhibition of methanogenesis from cattle wastes. Agricultural Wastes, 17, 241–261.

    Article  CAS  Google Scholar 

  34. Gallert, C., & Winter, J. (1997). Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production. Applied Microbiology and Biotechnology, 48, 405–410.

    Article  CAS  Google Scholar 

  35. Bujoczek, G., Oleszkiewicz, J., Sparling, R., & Cenkowski, S. (2000). High solid anaerobic digestion of chicken manure. Journal of Agricultural Engineering Research, 76, 51–60.

    Article  Google Scholar 

  36. Lauterböck, B., Nikolausz, M., Lv, Z., Baumgartner, M., Liebhard, G., & Fuchs, W. (2014). Improvement of anaerobic digestion performance by continuous nitrogen removal with a membrane contactor treating a substrate rich in ammonia and sulfide. Bioresource Technology, 158, 209–216.

    Article  Google Scholar 

  37. Ho, L., & Ho, G. (2012). Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid. Water Research, 46, 4339–4350.

    Article  CAS  Google Scholar 

  38. Sasaki, K., Morita, M., Hirano, S.-i., Ohmura, N., & Igarashi, Y. (2011). Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles. Applied Microbiology and Biotechnology, 90, 1555–1561.

    Article  CAS  Google Scholar 

  39. Abouelenien, F., Fujiwara, W., Namba, Y., Kosseva, M., Nishio, N., & Nakashimada, Y. (2010). Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresource Technology, 101, 6368–6373.

    Article  CAS  Google Scholar 

  40. Li, D., Yuan, Z. H., Zhang, Y., Sun, Y. M., Kong, X. Y., & Li, L. H. (2008). Anaerobic biochemical methane potential of organic fraction of municipal solid waste. Acta Scientiae Circumstantiae, 28, 2284–2290.

    CAS  Google Scholar 

  41. Angelidaki, I., & Ahring, B. K. (1993). Thermophilic anaerobic-digestion of livestock waste—the effect of ammonia. Applied Microbiology and Biotechnology, 38, 560–564.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (21476222), the National Key Technology Support Program of China (2015BAD21B01), and the Agricultural Science and Technology Innovation Program (CAAS-ASTIP-2015- BIOMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 272 kb)

ESM 2

(DOCX 32 kb)

ESM 3

(DOCX 260 kb)

ESM 4

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, Z., Liu, X., Huang, X. et al. Anaerobic Mesophilic Codigestion of Rice Straw and Chicken Manure: Effects of Organic Loading Rate on Process Stability and Performance. Appl Biochem Biotechnol 179, 846–862 (2016). https://doi.org/10.1007/s12010-016-2035-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2035-6

Keywords

Navigation