Skip to main content
Log in

GH53 Endo-Beta-1,4-Galactanase from a Newly Isolated Bacillus licheniformis CBMAI 1609 as an Enzymatic Cocktail Supplement for Biomass Saccharification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Galactanases (endo-β-1,4-galactanases—EC 3.2.1.89) catalyze the hydrolysis of β-1,4 galactosidic bonds in arabinogalactan and galactan side chains found in type I rhamnogalacturan. The aim of this work was to understand the catalytic function, biophysical properties, and use of a recombinant GH53 endo-beta-1,4-galactanase for commercial cocktail supplementation. The nucleotide sequence of the endo-β-1,4-galactanase from Bacillus licheniformis CBMAI 1609 (Bl1609Gal) was cloned and expressed in Escherichia coli, and the biochemical and biophysical properties of the enzyme were characterized. The optimum pH range and temperature of Bl1609Gal activity were 6.5–8 and 40 °C, respectively. Furthermore, Bl1609Gal showed remarkable pH stability, retaining more than 75 % activity even after 24 h of incubation at pH 4–10. The enzyme was thermostable, retaining nearly 100 % activity after 1-h incubation at pH 7.0 at 25–45 °C. The enzymatic efficiency (K cat /K m ) against potato galactan under optimum conditions was 241.2 s−1 mg−1 mL. Capillary zone electrophoresis demonstrated that the pattern of galactan hydrolysis by Bl1609Gal was consistent with that of endogalactanases. Supplementation of the commercial cocktail ACCELLERASE®1500 with recombinant Bl1609Gal increased hydrolysis of pretreated sugarcane bagasse by 25 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nanda, S., Mohammad, J., Reddy, S. N., Kozinski, J. A., & Dalai, A. K. (2014). Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 4, 157–91.

    Article  CAS  Google Scholar 

  2. Mathews, S. L., Pawlak, J., & Grunden, A. M. (2015). Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Applied Microbiology and Biotechnology, 99, 2939–54.

    Article  CAS  Google Scholar 

  3. Howard, R. L., Abotsi, E., Jansen van Rensburg, E. L., & Howard, S. (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12), 602–19.

    Article  CAS  Google Scholar 

  4. Singhvi, M. S., Chaudhari, S., & Gokhale, D. V. (2014). Lignocellulose processing: a current challenge. RSC Advances, 4, 8271–7.

    Article  CAS  Google Scholar 

  5. Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chemistry, 12(4), 539–54.

    Article  CAS  Google Scholar 

  6. Tu, T., Bai, Y., Luo, H., Ma, R., Wang, Y., Shi, P., Yang, P., Meng, K., & Yao, B. (2014). A novel bifunctional pectinase from Penicillium oxalicum SX6 with separate pectin methylesterase and polygalacturonase catalytic domains. Applied Microbiology and Biotechnology, 98, 5019–28.

    Article  CAS  Google Scholar 

  7. Willats, W. G. T., McCartney, L., Mackie, W., & Knox, J. P. (2001). Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology, 47, 9–27.

    Article  CAS  Google Scholar 

  8. Caffall, K. H., & Mohnen, D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research, 344, 1879–900.

    Article  CAS  Google Scholar 

  9. Sharma, N., Rathore, M., & Sharma, M. (2013). Microbial pectinase: sources, characterization and application. Reviews in Environmental Science and Bio/Technology, 12, 45–60.

    Article  CAS  Google Scholar 

  10. Torpenholt, S., Le Nours, J., Christensen, U., Jahn, M., Withers, S., Ostergaard, P. R., Borchert, T. V., Pousen, J. C., & Lo Leggio, L. (2011). Activity of three β-1,4-galactanases on small chromogenic substrates. Carbohydrate Research, 346, 2028–33.

    Article  CAS  Google Scholar 

  11. Le Nours, J., De Maria, L., Welner, D., Jorgensen, C. T., Christensen, L. L. H., Borchert, T. V., Larsen, S., & Lo Leggio, L. (2008). Investigating the binding of β-1,4-galactan to Bacillus licheniformis β-1,4-galactanase by crystallography and computational modeling. Proteins, 75(4), 977–89.

    Article  Google Scholar 

  12. Bjornvad, M. E., Clausen, I. G., Schulein, M., Bech, L., Ostergaard, P. R., & Sjoholm, C. (2001). Bacterial galactanases and use thereof. United States Patent, 6, 331,426.

    Google Scholar 

  13. Souza, A. P., Leite, D. C. C., Pattathil, S., Hahn, M. G., & Buckeridge, M. S. (2013). Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. BioEnergy Research, 6(2), 564–79.

    Article  CAS  Google Scholar 

  14. Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues, I: sugarcane bagasse. Bioresource Technology, 74(1), 69–80.

    Article  CAS  Google Scholar 

  15. Li, J., Zhou, P., Liu, H., Xiong, C., Lin, J., Xiao, W., Gong, Y., & Liu, Z. (2014). Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies. Bioresource Technology, 155, 258–65.

    Article  CAS  Google Scholar 

  16. Berlin, A., Maximenko, V., Gilkes, N., & Saddler, J. (2007). Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnology and Bioengineering, 97(2), 287–96.

    Article  CAS  Google Scholar 

  17. Delabona, P. D. S., Cota, J., Hoffmam, Z. B., Paixão, D. A. A., Farinas, C. S., Cairo, J. P. L. F., Lima, D. J., Squina, F. M., Ruller, R., & Pradella, J. G. C. (2013). Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and α-L-arabinofuranosidase. Bioresource Technology, 131, 500–7.

    Article  Google Scholar 

  18. Machado, C. B., Citadini, A. P., Goldbeck, R., de Lima, E. A., Figueiredo, F. L., da Silva, T. M., Hoffmam, Z. B., de Sousa, A. S., Squina, F. M., Polizeli, M. L. T. M., Ruller, R., & Ward, R. J. (2015). Increased biomass saccharification by supplementation of a commercial enzyme cocktail with endo-arabinanase from Bacillus licheniformis. Biotechnology Letters, 37(7), 1455–62.

    Article  CAS  Google Scholar 

  19. Zhang, J., Pakarinen, A., & Viikari, L. (2013). Synergy between cellulases and pectinases in the hydrolysis of hemp. Bioresource Technology, 129, 302–7.

    Article  CAS  Google Scholar 

  20. Alvarez, T. M., Goldbeck, R., Dos Santos, C. R., Paixão, D. A., Gonçalves, T. A., Cairo, J. P. L. F., Almeida, R. F., Pereira, I. O., Jackson, G., Cota, J., Büchli, F., Citadini, A. P., Ruller, R., Polo, C. C., Neto, M. O., Murakami, M. T., & Squina, F. M. (2013). Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. Plos One, 8(7), e70014. doi:10.1371/journal.pone.0070014.

    Article  CAS  Google Scholar 

  21. Miller, G. L. (1959). Use dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–8.

    Article  CAS  Google Scholar 

  22. Evangelista, R. A., Liu, M. S., & Chen, F. T. A. (1995). Characterization of 9-aminopyrene-1,4,6-trisulfonate derivatized sugars by capillary electrophoresis with laser-induced fluorescence detection. Analytical Chemistry, 67(13), 2239–45.

    Article  CAS  Google Scholar 

  23. Cota, J., Alvarez, T. M., Citadini, A. P., Santos, C. R., de Oliveira Neto, M., Oliveira, R. R., Pastore, G. M., Ruller, R., Prade, R. A., Murakami, M. T., & Squina, F. M. (2011). Mode of operation and low-resolution structure of a multi-domain and hyperthermophilic endo-β-1,3-glucanase from Thermotoga petrophila. Biochemical Biophysical Research Communications, 406, 590–4.

    Article  CAS  Google Scholar 

  24. Bragatto, J., Segato, F., & Squina, F. M. (2013). Production of xylooligosaccharides (XOS) from delignified sugarcane bagasse by peroxide-HAc process using recombinant xylanase from Bacillus subtilis. Industrial Crops and Products, 51, 123–9.

    Article  CAS  Google Scholar 

  25. Tsumura, K., Hashimoto, Y., Akiba, T., & Horikoshi, K. (1991). Purification and properties of galactanases from alkalophilic Bacillus spS-2 and S-39. Agricultural and Biological Chemistry, 55(5), 1265–71.

    CAS  Google Scholar 

  26. Corrêa, D. H. A., & Ramos, C. H. I. (2009). The use of circular dichroism spectroscopy to study protein folding, form and function. African Journal of Biochemistry Research, 3(5), 164–73.

    Google Scholar 

  27. Ryttersgaard, C., Nours, J. L., Leggio, L. L., Jorgensen, C. T., Christensen, L. L. H., Bjornvad, M., & Larsen, S. (2004). The structure of endo-β-1,4-galactanase from Bacillus licheniformis in complex with two oligosaccharide products. Journal of Molecular Biology, 341(1), 107–17.

    Article  CAS  Google Scholar 

  28. Emi, S., & Yamoto, T. (1972). Purification and properties of several galactanases of Bacillus subtilis var. amylosacchariticus. Agricultural and Biological Chemistry, 36(11), 1945–54.

    Article  CAS  Google Scholar 

  29. Sakamoto, T., & Ishimaru, M. (2013). Peculiarities and applications of galactanolytic enzymes that act on type I and II arabinogalactans. Applied Microbiology and Biotechnology, 97(12), 5201–13.

    Article  CAS  Google Scholar 

  30. Yamamoto, T., & Emi, S. (1998). Arabinogalactanase of Bacillus subtilis var. amylosacchariticus. Methods in Enzymology, 160, 719–25.

    Article  Google Scholar 

  31. Tabachnikov, O., & Shoham, Y. (2013). Functional characterization of the galactan utilization system of Geobacillus stearothermophilus. The FEBS Journal, 280, 950–64.

    CAS  Google Scholar 

  32. Braithwaite, K. L., Barna, T., Spurway, T. D., Charnock, S. J., Black, G. W., Hughes, N., Lakey, J. H., Virden, R., Hazlewood, G. P., Henrissat, B., & Gilbert, H. J. (1997). Evidence that galactanase A from Pseudomonas fluorescens subspecies cellulosa is a retaining family 53 glycosyl hydrolase in which E161 and E270 are the catalytic residues. Biochemistry, 36(49), 15489–500.

    Article  CAS  Google Scholar 

  33. Banerjee, G., Scott-Craig, J. S., & Walton, J. D. (2010). Improving enzymes for biomass conversion: a basic research perspective. BioEnergy Research, 3, 82–92.

    Article  Google Scholar 

  34. Banerjee, G., Car, S., Scott-Craig, J. S., Borrusch, M. S., Bongers, M., & Walton, J. D. (2010). Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass. Bioresource Technology, 101, 9097–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNPq (481666/2012-5), CAPES, and FAPESP (2013/14454-3) research grants. We also thank the Laboratório de Análises de Macromoléculas (LAM) at Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) for their support on spectroscopic experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ruller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM. 1

(DOCX 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, E.A., Machado, C.B., Zanphorlin, L.M. et al. GH53 Endo-Beta-1,4-Galactanase from a Newly Isolated Bacillus licheniformis CBMAI 1609 as an Enzymatic Cocktail Supplement for Biomass Saccharification. Appl Biochem Biotechnol 179, 415–426 (2016). https://doi.org/10.1007/s12010-016-2003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2003-1

Keywords

Navigation