Skip to main content
Log in

Challenges and Opportunities in the Development of Aptamers for TNFα

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

RNA aptamers for tumor necrosis factor-alpha (TNFα), for which functionality was demonstrated in L929 cells, show only little affinity for the protein in vitro. Detailed investigation of the aptamer-protein interaction by surface plasmon resonance and quartz crystal microbalance analysis revealed that affinity is not the only crucial parameter for efficacy and functionality of those aptamers. Instead, the sensitive equilibrium of the monomeric and homotrimeric form of soluble TNFα decides on aptamer binding. Our results show that the field of application and the source of TNFα have to be carefully defined before selection of aptamer sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tram, K., Kanda, P., Salena, B. J., Huan, S., & Li, Y. (2014). Translating bacterial detection by DNAzymes into a litmus test. Angewandte Chemie, International Edition, 53, 12799–12802.

    Article  CAS  Google Scholar 

  2. Ali, M. M., Aguirre, S. D., Lazim, H., & Li, Y. (2011). Fluorogenic DNAzyme probes as bacterial indicators. Angewandte Chemie, International Edition, 50, 3751–3754.

    Article  CAS  Google Scholar 

  3. Xia, X., Piao, X., & Bong, D. (2014). Bifacial peptide nucleic acid as an allosteric switch for aptamer and ribozyme function. Journal of the American Chemical Society, 136, 7265–7268.

    Article  CAS  Google Scholar 

  4. Kellenberger, C. A., Chen, C., Whiteley, A. T., Portnoy, D. A., & Hammond, M. C. (2015). RNA-based fluorescent biosensors for live cell imaging of second messenger cyclic di-AMP. Journal of the American Chemical Society, 137, 6432–6435.

    Article  CAS  Google Scholar 

  5. Liu, L. H., Zhou, X. H., & Shi, H. C. (2015). Portable optical aptasensor for rapid detection of mycotoxin with a reversible ligand-grafted biosensing surface. Biosensors and Bioelectronics, 72, 300–305.

    Article  CAS  Google Scholar 

  6. Diba, F. S., Kim, S., & Lee, H. J. (2015). Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. Biosensors and Bioelectronics, 72, 355–361.

    Article  CAS  Google Scholar 

  7. Yuce, M., Ullah, N., & Budak, H. (2015). Trends in aptamer selection methods and applications. Analyst, 140, 5379–5399.

    Article  CAS  Google Scholar 

  8. Mann, D., Reinemann, C., Stoltenburg, R., & Strehlitz, B. (2005). In vitro selection of DNA aptamers binding ethanolamine. Biochemical and Biophysical Research Communications, 338, 1928–1934.

    Article  CAS  Google Scholar 

  9. Bruno, J. G., Carrillo, M. P., Phillips, T., & King, B. (2008). Development of DNA aptamers for cytochemical detection of acetylcholine. In Vitro Cellular and Developmental Biology - Animal, 44, 63–72.

    Article  CAS  Google Scholar 

  10. Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., & Toole, J. J. (1992). Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 355, 564–566.

    Article  CAS  Google Scholar 

  11. Tang, Z., Shangguan, D., Wang, K., Shi, H., Sefah, K., Mallikratchy, P., Chen, H. W., Li, Y., & Tan, W. (2007). Selection of aptamers for molecular recognition and characterization of cancer cells. Analytical Chemistry, 79, 4900–4907.

    Article  CAS  Google Scholar 

  12. Cao, X., Li, S., Chen, L., Ding, H., Xu, H., Huang, Y., Li, J., Liu, N., Cao, W., Zhu, Y., Shen, B., & Shao, N. (2009). Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Research, 37, 4621–4628.

    Article  CAS  Google Scholar 

  13. Stojanovic, M. N., & Landry, D. W. (2002). Aptamer-based colorimetric probe for cocaine. Journal of the American Chemical Society, 124, 9678–9679.

    Article  CAS  Google Scholar 

  14. Baker, B. R., Lai, R. Y., Wood, M. S., Doctor, E. H., Heeger, A. J., & Plaxco, K. W. (2006). An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. Journal of the American Chemical Society, 128, 3138–3139.

    Article  CAS  Google Scholar 

  15. Cruz-Aguado, J. A., & Penner, G. (2008). Determination of ochratoxin a with a DNA aptamer. Journal of Agricultural and Food Chemistry, 56, 10456–10461.

    Article  CAS  Google Scholar 

  16. Peeters, M., van Grinsven, B., Cleij, T. J., Jiménez-Monroy, K. L., Cornelis, P., Pérez-Ruiz, E., Wackers, G., Thoelen, R., De Ceuninck, W., Lammertyn, J., & Wagner, P. (2015). Label-free protein detection based on the heat-transfer method—a case study with the peanut allergen Ara h 1 and aptamer-based synthetic receptors. ACS Applied Materials & Interfaces, 7, 10316–10323.

    Article  CAS  Google Scholar 

  17. Kim, M., Um, H.-J., Bang, S., Lee, S.-H., Oh, S.-J., Han, J.-H., Kim, K.-W., Min, J., & Kim, Y.-H. (2009). Arsenic removal from Vietnamese groundwater using the arsenic-binding DNA aptamer. Environmental Science and Technology, 43, 9335–9340.

    Article  CAS  Google Scholar 

  18. Malerich, P. and Elston, D. (2006), TNF-alpha inhibitors: milestones in drug therapy, (Weinberg, J. and Buchholz, R., eds.). Basel: Birkhäuser, pp. 1–8.

  19. Russel, C.B.S., S.; Robson, K.M.; Kerkof, K.; Kivman, L.D.; Notari, K.H.; Rees, W.H.; Leshinsky, N.; Patterson, S.D. (2008), in Biomarker methods in drug discovery and development (Wang, F., ed.). Totawa: Humana Press, pp. 1–26.

  20. Daniel, V. (1995). Diagnostischer Wert der Zytokin-Bestimmung in serum und plasma. Deutsche Medizinische Wochenschrift, 120, 1171–1174.

    Article  CAS  Google Scholar 

  21. Tang, J., & Breaker, R. R. (1998). Mechanism for allosteric inhibition of an ATP-sensitive ribozyme. Nucleic Acids Research, 26, 4214–4221.

    Article  CAS  Google Scholar 

  22. Araki, M., Okuno, Y., Hara, Y., & Sugiura, Y. (1998). Allosteric regulation of a ribozyme activity through ligand-induced conformational change. Nucleic Acids Research, 26, 3379–3384.

    Article  CAS  Google Scholar 

  23. Hall, B., Hesselberth, J. R., & Ellington, A. D. (2007). Computational selection of nucleic acid biosensors via a slip structure model. Biosensors and Bioelectronics, 22, 1939–1947.

    Article  CAS  Google Scholar 

  24. Silverman, S. K. (2003). Rube Goldberg goes (ribo)nuclear? Molecular switches and sensors made from RNA. RNA, 9, 377–383.

    Article  CAS  Google Scholar 

  25. Vinkenborg, J. L., Karnowski, N., & Famulok, M. (2011). Aptamers for allosteric regulation. Nature Chemical Biology, 7, 519–527.

    Article  CAS  Google Scholar 

  26. Brosseron, F., Krauthausen, M., Kummer, M., & Heneka, M. (2014). Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: a comparative overview. Molecular Neurobiology, 50, 534–544.

    Article  CAS  Google Scholar 

  27. Baxevanis, C. N., Papilas, K., Dedoussis, G. V., Pavlis, T., & Papamichail, M. (1994). Abnormal cytokine serum levels correlate with impaired cellular immune responses after surgery. Clinical Immunology and Immunopathology, 71, 82–88.

    Article  CAS  Google Scholar 

  28. Arican, O., Aral, M., Sasmaz, S., & Ciragil, P. (2005). Serum levels of TNF-α, IFN-γ, IL-6, IL-8. Mediators of Inflammation, 2005, 273–279.

    Article  Google Scholar 

  29. Derin, D., Soydinç, H. O., Guney, N., Tas, F., Çamlıca, H., Duranyıldız, D., Yasasever, V., & Topuz, E. (2008). Serum levels of apoptosis biomarkers, survivin and TNF-alpha in nonsmall cell lung cancer. Lung Cancer, 59, 240–245.

    Article  Google Scholar 

  30. Nakai, Y., Hamagaki, S., Takagi, R., Taniguchi, A., & Kurimoto, F. (2000). Plasma concentrations of tumor necrosis factor-alpha (TNF-alpha) and soluble TNF receptors in patients with bulimia nervosa. Clinical Endocrinology, 53, 383–388.

    Article  CAS  Google Scholar 

  31. Costagliola, C., Romano, V., De Tollis, M., Aceto, F., Dell‘Omo, R., Romano, M. R., Pedicino, C., & Semeraro, F. (2013). TNF-alpha levels in tears: a novel biomarker to assess the degree of diabetic retinopathy. Mediators of Inflammation, 2013, 629529.

    Article  CAS  Google Scholar 

  32. Kurokawa, H., Yamashita, M., Yamashita, Y., Murata, T., Miura, K., & Kajiyama, M. (1998). Estimation of tumor necrosis factor-alpha in the diagnosis, the prognosis and the treatment follow-up of oral squamous cell carcinoma. Fukuoka igaku zasshi = Hukuoka acta medica, 89, 312–320.

    CAS  Google Scholar 

  33. Schulz, R., Aker, S., Belosjorow, S., & Heusch, G. (2004). TNFα in ischemia/reperfusion injury and heart failure. Basic Research in Cardiology, 99, 8–11.

    Article  CAS  Google Scholar 

  34. Maes, M. (2011). Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35, 664–675.

    Article  CAS  Google Scholar 

  35. Heffler, E., Berry, M., & Pavord, I. (2007). Tumor necrosis factor-α. BioDrugs, 21, 345–349.

    Article  CAS  Google Scholar 

  36. Roberts-Thomson, I. C., Fon, J., Uylaki, W., Cummins, A. G., & Barry, S. (2011). Cells, cytokines and inflammatory bowel disease: a clinical perspective. Expert Review of Gastroenterology & Hepatology, 5, 703–716.

    Article  CAS  Google Scholar 

  37. Yan, X., Gao, X., & Zhang, Z. (2004). Isolation and characterization of 2′-amino-modified RNA aptamers for human TNFalpha. Genomics, Proteomics & Bioinformatics, 2, 32–42.

    CAS  Google Scholar 

  38. Soukup, G. A., & Breaker, R. R. (1999). Engineering precision RNA molecular switches. Proceedings of the National Academy of Sciences of the United States of America, 96, 3584–3589.

    Article  CAS  Google Scholar 

  39. Fedor, M. J., & Uhlenbeck, O. C. (1992). Kinetics of intermolecular cleavage by hammerhead ribozymes. Biochemistry, 31, 12042–12054.

    Article  CAS  Google Scholar 

  40. Dixit, C. K., Vashist, S. K., MacCraith, B. D., & O’Kennedy, R. (2011). Multisubstrate-compatible ELISA procedures for rapid and high-sensitivity immunoassays. Journal of Natural Products, 6, 439–445.

    CAS  Google Scholar 

  41. Eck, M. J., & Sprang, S. R. (1989). The structure of tumor necrosis factor-alpha at 2.6 A resolution. Implications for receptor binding. Journal of Biological Chemistry, 264, 17595–17605.

    CAS  Google Scholar 

  42. Appel, B., Marschall, T., Strahl, A. and Müller, S. (2012), Ribozymes, vol. 848: Methods in molecular biology, (Hartig, J. S., ed.). Totawa: Humana Press, pp. 41–59.

  43. Aderka, D., Engelmann, H., Maor, Y., Brakebusch, C., & Wallach, D. (1992). Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. Journal of Experimental Medicine, 175, 323–329.

    Article  CAS  Google Scholar 

  44. Corti, A., Fassina, G., Marcucci, F., Barbanti, E., & Cassani, G. (1992). Oligomeric tumour necrosis factor alpha slowly converts into inactive forms at bioactive levels. Biochemical Journal, 284, 905–910.

    Article  CAS  Google Scholar 

  45. Williams, D. H., Stephens, E., O’Brien, D. P., & Zhou, M. (2004). Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. Angewandte Chemie, International Edition, 43, 6596–6616.

    Article  CAS  Google Scholar 

  46. Caruso, F., Furlong, D. N., & Kingshott, P. (1997). Characterization of ferritin adsorption onto gold. Journal of Colloid and Interface Science, 186, 129–140.

    Article  CAS  Google Scholar 

  47. Höök, F., Vörös, J., Rodahl, M., Kurrat, R., Böni, P., Ramsden, J. J., Textor, M., Spencer, N. D., Tengvall, P., Gold, J., & Kasemo, B. (2002). A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids and Surfaces. B, Biointerfaces, 24, 155–170.

    Article  Google Scholar 

  48. Feiler, A. A., Sahlholm, A., Sandberg, T., & Caldwell, K. D. (2007). Adsorption and viscoelastic properties of fractionated mucin (BSM) and bovine serum albumin (BSA) studied with quartz crystal microbalance (QCM-D). Journal of Colloid and Interface Science, 315, 475–481.

    Article  CAS  Google Scholar 

  49. Hianik, T., Grman, I., & Karpisova, I. (2009). The effect of DNA aptamer configuration on the sensitivity of detection thrombin at surface by acoustic method. Chemical Communications (Cambridge, England), 14, 6303–6305.

    Article  Google Scholar 

  50. Warzocha, K., Salles, G., Bienvenu, J., Bastion, Y., Dumontet, C., Renard, N., Neidhardt-Berard, E. M., & Coiffier, B. (1997). Tumor necrosis factor ligand-receptor system can predict treatment outcome in lymphoma patients. Journal of Clinical Oncology, 15, 499–508.

    CAS  Google Scholar 

  51. Alzani, R., Cozzi, E., Corti, A., Temponi, M., Trizio, D., Gigli, M., & Rizzo, V. (1995). Mechanism of suramin-induced deoligomerization of tumor necrosis factor alpha. Biochemistry, 34, 6344–6350.

    Article  CAS  Google Scholar 

  52. Marusic, J., Podlipnik, C., Jevsevar, S., Kuzman, D., Vesnaver, G., & Lah, J. (2012). Recognition of human tumor necrosis factor alpha (TNF-alpha) by therapeutic antibody fragment: energetics and structural features. Journal of Biological Chemistry, 287, 8613–8620.

    Article  CAS  Google Scholar 

  53. Orava, E. W., Jarvik, N., Shek, Y. L., Sidhu, S. S., & Gariepy, J. (2013). A short DNA aptamer that recognizes TNFalpha and blocks its activity in vitro. ACS Chemical Biology, 8, 170–178.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Müller.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nübel, C., Appel, B., Hospach, I. et al. Challenges and Opportunities in the Development of Aptamers for TNFα. Appl Biochem Biotechnol 179, 398–414 (2016). https://doi.org/10.1007/s12010-016-2002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2002-2

Keywords

Navigation