Skip to main content
Log in

Enzymatic Hydrophobic Modification of Jute Fibers via Grafting to Reinforce Composites

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Horseradish peroxidase (HRP)/H2O2 system catalyzes the free-radical polymerization of aromatic compounds such as lignins and gallate esters. In this work, dodecyl gallate (DG) was grafted onto the surfaces of lignin-rich jute fabrics by HRP-mediated oxidative polymerization with an aim to enhance the hydrophobicity of the fibers. The DG-grafted jute fibers and reaction products of their model compounds were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results clearly indicated the grafting of DG to the jute fiber by HRP. Furthermore, the hydrophobicity of jute fabrics was determined by measuring the wetting time and static contact angle. Compared to the control sample, the wetting time and static contact angle of the grated fabrics changed from ~1 s to 1 h and from ~0° to 123.68°, respectively. This clearly proved that the hydrophobicity of jute fabrics improved considerably. Conditions of the HRP-catalyzed DG-grafting reactions were optimized in terms of the DG content of modified jute fabrics. Moreover, the results of breaking strength and elongation of DG-grafted jute/polypropylene (PP) composites demonstrated improved reinforcement of the composite due to enzymatic hydrophobic modification of jute fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zini, E., & Scandola, M. (2011). Green composites: an overview. Polymer Composites, 32, 1905–1915.

    Article  CAS  Google Scholar 

  2. Ashori, A. (2008). Wood-plastic composites as promising green-composites for automotive industries. Bioresource Technology, 99, 4661–4667.

    Article  CAS  Google Scholar 

  3. Lo Re, G., Morreale, M., Scaffaro, R., & La Mantia, F. P. (2012). Kenaf-filled biodegradable composites: rheological and mechanical behaviour. Polymer International, 61, 1542–1548.

    Article  CAS  Google Scholar 

  4. Sait, A. O. A. S., & Subramaniam, V. (2014). Composites from natural fibres. International Journal of Engineering & Technolog, 3, 14–16.

    Google Scholar 

  5. Li, Z., Renneckar, S., & Barone, J. R. (2010). Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose, 17, 57–68.

    Article  Google Scholar 

  6. Lin, Z. Y., & Renneckar, S. (2011). Nanocomposite-based lignocellulosic fibers 2: layer-by-layer modification of wood fibers for reinforcement in thermoplastic composites. Composites Part A: Applied Science, 42, 84–91.

    Article  Google Scholar 

  7. Dong, A. X., Yu, Y. Y., Yuan, J. G., Wang, Q., & Fan, X. R. (2014). Hydrophobic modification of jute fiber used for composite reinforcement via laccase-mediated grafting. Applied Surface Science, 301, 418–427.

    Article  CAS  Google Scholar 

  8. Uawongsuwan, P., Yang, Y. Q., & Hamada, H. (2015). Long jute fiber-reinforced polypropylene composite: effects of jute fiber bundle and glass fiber hybridization. Journal of Applied Polymer Science, 132, 41819–41831.

    Article  Google Scholar 

  9. Padal, K. T. B., Ramji, K., & Prasad, V. V. S. (2014). Thermal properties of jute nanofibre reinforced composites. International Journal of Engineering Research, 3, 333–335.

    Article  CAS  Google Scholar 

  10. Arbelaiz, A., Fernandez, B., Valea, A., & Mondragon, I. (2006). Mechanical properties of short flax fibre bundle/poly (Ɛ-caprolactone) composites: influence of matrix modification and fibre content. Carbohydrate Polymers, 64, 224–232.

    Article  CAS  Google Scholar 

  11. Rong, M. Z., Zhang, M. Q., Liu, Y., Yang, G. C., & Zeng, H. M. (2001). The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology, 61, 1437–1447.

    Article  CAS  Google Scholar 

  12. Lei, W., & Zhang, C. S. (2008). The mechanics performance of ramie fabric/polypropylene composites. Journal of Composite Materials, 25, 40–45.

    CAS  Google Scholar 

  13. Marais, S., Gouanve, F., Bonnesoeur, A., Greneta, J., Poncin-Epaillardb, F., Morvanc, C., & Métayer, M. (2005). Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and antoclave treatments on mechanical and permeation properties. Composites: Part A, 36, 975–986.

    Article  Google Scholar 

  14. Albanoa, C., Reyes, J., Ichazo, M., Gonzálezc, J., Britob, M., & Moronta, D. (2002). Analysis of the mechanical, thermal and morphological behaviour of polypropylene compounds with sisal fibre and wood flour irradiated with gamma rays. Polymer Degradation and Stability, 76, 191–203.

    Article  Google Scholar 

  15. Zhang, Y. F., Zhang, C. A., Xiao, J. Y., Zeng, J. C., Liu, J., Du, G., & Wang, C. Q. (2002). Study on graft copolymerization of ramie noil fiber and MMA. Materials Science and Engineering, 20, 527–529.

    CAS  Google Scholar 

  16. Zhang, C. A., Lu, B., Zeng, J. C., & Zhang, Y. F. (2004). Surface treatment of fallen ramie and study on properties of composites. Engineering Plastics Application, 32, 5–9.

    Google Scholar 

  17. Hong, C. K., Hwang, I., Kim, N., Park, D. H., Hwang, B. S., & Nah, C. (2008). Mechanical properties of silanized jute-polypropylene composites. Journal of Industrial and Engineering Chemistry, 14, 71–76.

    Article  CAS  Google Scholar 

  18. Kohri, M., Fukushima, H., Taniguchi, T., & Nakahira, T. (2010). Synthesis of polyarbutin by oxidative polymerization using PEGylated hematin as a biomimetic catalyst. Polymer Journal, 42, 952–955.

    Article  CAS  Google Scholar 

  19. Cheng, W. J., & Harper, W. F., Jr. (2012). Chemical kinetics and interactions involved in horseradish peroxidase-mediated oxidative polymerization of phenolic compounds. Enzyme and Microbial Technology, 50, 204–208.

    Article  CAS  Google Scholar 

  20. Hollmann, F., & Arends, I. W. C. E. (2012). Enzyme initiated radical polymerizations. Polymers, 4, 759–766.

    Article  Google Scholar 

  21. del Río, J. C., Rencoret, J., Marques, G., Li, J., Gellerstedt, G., Jiménez-Barbero, J., Martínez, A. T., & Gutiérrez, A. (2009). Structural characterization of the lignin from jute (Corchorus capsularis) fibers. Journal of Agricultural and Food Chemistry, 57, 10271–10281.

    Article  Google Scholar 

  22. Liu, H., Yang, F. K., & Qiu, L. H. (2001). Study on polymerization of lignin-phenol resin catalyzed by horseradish peroxidase. Polymeric Materials Science and Engineering, 17, 173–175.

    CAS  Google Scholar 

  23. Gao, G. Z., Karaaslan, M. A., Kadla, J. F., & Ko, F. (2014). Enzymatic synthesis of ionic responsive lignin nanofibres through surface poly(N-isopropylacrylamide) immobilization. Green Chemistry, 16, 3890–3898.

    Article  CAS  Google Scholar 

  24. Liu, R. R., Dong, A. X., Fan, X. R., Wang, Q., Yu, Y. Y., & Cavaco-Paulo, A. (2015). HRP-mediated polyacrylamide graft modification of raw jute fabric. Journal of Molecular Catalysis B: Enzymatic, 116, 29–38.

    Article  CAS  Google Scholar 

  25. Saastamoinen, P., Mattinen, M. L., Hippi, U., Nousiainen, P., Sipilä, J., Lille, M., Suurnäkki, A., & Pere, J. (2012). Laccase aided modification of nanofibrillated cellulose with dodecyl gallate. Bioresources, 7, 5749–5770.

    Article  Google Scholar 

  26. Mattinen, M. L., Maijala, P., Nousiainen, P., Smeds, A., Kontro, J., Sipilä, J., Tamminen, T., Willför, S., & Viikari, L. (2011). Oxidation of lignans and lignin model compounds by laccase in aqueous solvent systems. Journal of Molecular Catalysis B: Enzymatic, 72, 122–129.

    Article  CAS  Google Scholar 

  27. Kobayashi, S., & Makino, A. (2009). Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chemical Reviews, 109, 5288–5353.

    Article  CAS  Google Scholar 

  28. Faix, O. (1991). Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung, 45, 21–27.

    Article  CAS  Google Scholar 

  29. Vachouda, L., Chen, T. H., Payne, G. F., & Vazquez-Duhalt, R. (2001). Peroxidase catalyzed grafting of gallate esters onto the polysaccharide chitosan. Enzyme and Microbial Technology, 29, 380–385.

    Article  Google Scholar 

  30. Zavaleta-Avejar, L., Bosquez-Molina, E., Gimeno, M., Pérez-Orozco, J. P., & Shirai, K. (2014). Rheological and antioxidant power studies of enzymatically grafted chitosan with a hydrophobic alkyl side chain. Food Hydrocolloid., 39, 113–119.

    Article  CAS  Google Scholar 

  31. Hossain, K. M. G., González, M. D., Monmany, J. M. D., & Tzanov, T. (2010). Effects of alkyl chain lengths of gallates upon enzymatic wool functionalisation. Journal of Molecular Catalysis B: Enzymatic, 67, 231–235.

    Article  Google Scholar 

  32. Džunuzović, E. S., Džunuzović, J. V., Marinković, A. D., Marinović-Cincović, M. T., Jeremić, K. B., & Nedeljković, J. M. (2012). Influence of surface modified TiO2 nanoparticles by gallates on the properties of PMMA/ TiO2 nanocomposites. European Polymer Journal, 48, 1385–1393.

    Article  Google Scholar 

  33. Akkara, J. A., Ayyagari, M. S. R., & Bruno, F. F. (1999). Enzymatic synthesis and modification of polymers in nonaqueous solvents. Trends in Biotechnology, 17, 67–73.

    Article  CAS  Google Scholar 

  34. Premachandran, R. S., Banerjee, S., Wu, X. K., John, V. T., McPherson, G. L., Akkara, J., Ayyagari, M., & Kaplan, D. (1996). Enzymatic synthesis of fluorescent naphthol-based polymers. Macromolecules, 29, 6452–6460.

    Article  CAS  Google Scholar 

  35. Durand, A., Lalot, T., Brigodiot, M., & Maréchal, E. (2000). Enzyme-mediated initiation of acrylamide polymerization; reaction mechanism. Polymer, 41, 8183–8192.

    Article  CAS  Google Scholar 

  36. Battistel, E., Morra, M., & Marinetti, M. (2001). Enzymatic surface modification of acrylonitrile fibers. Applied Surface Science, 177, 32–41.

    Article  CAS  Google Scholar 

  37. Liu, X. Y., & Dai, G. C. (2007). Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites. Express Polymer Letters, 5, 299–307.

    Article  Google Scholar 

  38. Arbelaiz, A., Fernandez, B., Ramos, J. A., Retegi, A., Llano-Ponte, R., & Mondragon, I. (2005). Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Composites Science and Technology, 65, 1582–1592.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51173071), the Program for New Century Excellent Talents in University (NCET-12-0883), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R26) the Fundamental Research Funds for the Central Universities (JUSRP51312B, JUSRP51505), and the Graduate Student Innovation Plan of Jiangsu Province of China (SJLX_0527).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Dong, A., Fan, X. et al. Enzymatic Hydrophobic Modification of Jute Fibers via Grafting to Reinforce Composites. Appl Biochem Biotechnol 178, 1612–1629 (2016). https://doi.org/10.1007/s12010-015-1971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1971-x

Keywords

Navigation