Skip to main content
Log in

The Influence of Dopants on the Effectiveness of Alginate Beads in Immobilized Cell Reactors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Zymomonas mobilis immobilized in doped calcium alginate (Ca-alginate) was successfully employed for the production of ethanol in an immobilized cell reactor. Polyethylene oxide and F127 dimethacrylate were evaluated as potential dopants for Ca-alginate beads to decrease lag time and increase initial ethanol yield. The influence of the type and concentration of the dopant on the effectiveness of the microbe immobilized in Ca-alginate beads to produce ethanol was studied, and results were compared to the widely used 2 % Ca-alginate with no dopants, which acted as control. Immobilized cell reactors that were operated using beads doped with 0.25 % polyethylene oxide (PEO) reached an ethanol yield of ∼70 % in 24 h, which was significantly higher than an ethanol yield of 25 % obtained for the control reactor operated using undoped Ca-alginate beads. This study shows that the use of water-soluble dopants can potentially reduce the lag phase and thus improve the initial production yield of immobilized cell reactors, likely due to an increase in porosity and diffusion rate of the doped beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda: a research roadmap resulting from the biomass to biofuels workshop, December 7–9, 2005, Rockville, Maryland. United States department of energy office of the biomass program.

  2. Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O’Hare, M., & Kammen, D. M. (2006). Ethanol can contribute to energy and environmental goals. Science, 311, 506–508.

    Article  CAS  Google Scholar 

  3. Tang, X., Feng, H., & Chen, W. N. (2013). Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. Metabolic Engineering, 16, 95–102.

    Article  CAS  Google Scholar 

  4. Bai, F. W., Anderson, W. A., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26, 89–105.

    Article  CAS  Google Scholar 

  5. Van Rensburg, E., Den Haan, R., La Grange, D. C., Volschenk, H., Van Zyl, W. H. and Gorgens, J. F. (2014) Engineering recombinant organisms for next-generation ethanol production. Biofuels. Caister Academic Press, Norwich, UK. pp. 93–135

  6. Waldron, R. D., Vega, J. L., Clausen, E. C., & Gaddy, J. L. (1988). Ethanol production using Zymomonas mobilis in a cross-linked immobilized cell reactor. Applied Biochemistry and Biotechnology, 18, 127–142.

    Article  CAS  Google Scholar 

  7. Cysewski, G. R., & Wilke, C. R. (1978). Process design and economic studies of alternative fermentation methods for the production of ethanol. Biotechnology and Bioengineering, 20, 1421–1444.

    Article  CAS  Google Scholar 

  8. Najafpour, G. D. (2007). In G. D. Najafpour (Ed.), Biochemical engineering and biotechnology (pp. 199–227). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  9. Iida, T., Izumida, H., Akagi, Y., & Sakamoto, M. (1993). Continuous ethanol fermentation in molasses medium using Zymomonas mobilis immobilized in photo-crosslinkable resin gels. Journal of Fermentation and Bioengineering, 75, 32–35.

    Article  CAS  Google Scholar 

  10. Yamada, T., Fatigati, M., & Zhang, M. (2002). Performance of immobilized Zymomonas mobilis 31821 (pZB5) on actual hydrolysates produced by arkenol technology. Applied Biochemistry and Biotechnology, 98–100, 899–907.

    Article  Google Scholar 

  11. Karagöz, P., & Özkan, M. (2014). Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system. Bioresource Technology, 158, 286–293.

    Article  Google Scholar 

  12. Verbelen, P., De Schutter, D., Delvaux, F., Verstrepen, K., & Delvaux, F. (2006). Immobilized yeast cell systems for continuous fermentation applications. Biotechnology Letters, 28, 1515–1525.

    Article  CAS  Google Scholar 

  13. Yan, S., Wang, P., Zhai, Z., & Yao, J. (2011). Fuel ethanol production from concentrated food waste hydrolysates in immobilized cell reactors by Saccharomyces cerevisiae H058. Journal of Chemical Technology & Biotechnology, 86, 731–738.

    Article  CAS  Google Scholar 

  14. Peijun, L., Xin, W., Stagnitti, F., Ling, L., Zongqiang, G., Hairong, Z., Xianzhe, X., & Chris, A. (2005). Degradation of phenanthrene and pyrene in soil slurry reactors with immobilized bacteria Zoogloea sp. Environmental Engineering Science, 22, 390–399.

    Article  Google Scholar 

  15. Sabu, A., Kumar, S., & Chandrasekaran, M. (2002). Continuous production of extracellular l-glutaminase by ca-alginate-immobilized marine Beauveria bassiana BTMF S-10 in packed-bed reactor. Applied Biochemistry and Biotechnology, 102–103, 71–79.

    Article  Google Scholar 

  16. Bangrak, P., Limtong, S., & Phisalaphong, M. (2011). Continuous ethanol production using immobilized yeast cells entrapped in loofa-reinforced alginate carriers. Brazilian Journal of Microbiology, 42, 676–684.

    Article  CAS  Google Scholar 

  17. Lee, G. M., Kim, C. H., Abidin, Z., Han, M. H., & Rhee, S. K. (1987). Continuous ethanol production from sago starch using immobilized amyloglucosidase and Zymomonas mobilis. Journal of Fermentation Technology, 65, 531–535.

    Article  CAS  Google Scholar 

  18. Najafpour, G., Younesi, H., & Syahidah Ku Ismail, K. (2004). Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresource Technology, 92, 251–260.

    Article  CAS  Google Scholar 

  19. da Cunha, M. A., Converti, A., Santos, J., Ferreira, S. S., & da Silva, S. (2009). PVA-hydrogel entrapped Candida guilliermondii for xylitol production from sugarcane hemicellulose hydrolysate. Applied Biochemistry and Biotechnology, 157, 527–537.

    Article  Google Scholar 

  20. Rebroš, M., Rosenberg, M., Grosová, Z., Krištofíková, L. u., Paluch, M., & Šipöcz, M. (2009). Ethanol production from starch hydrolyzates using Zymomonas mobilis and glucoamylase entrapped in polyvinylalcohol hydrogel. Applied Biochemistry and Biotechnology, 158, 561–570.

    Article  Google Scholar 

  21. Jovanovic-Malinovska, R., Cvetkovska, M., Kuzmanova, S., Tsvetanov, C., & Winkelhausen, E. (2010). Immobilization of Saccharomyces cerevisiae in novel hydrogels based on hybrid networks of poly(ethylene oxide), alginate and chitosan for ethanol production. Macedonian Journal of Chemistry and Chemical Engineering, 29, 169–179.

    CAS  Google Scholar 

  22. Mahou, R., Tran, N., Dufresne, M., Legallais, C., & Wandrey, C. (2012). Encapsulation of Huh-7 cells within alginate-poly(ethylene glycol) hybrid microspheres. Journal of Materials Science Materials in Medicine, 23, 171–179.

    Article  CAS  Google Scholar 

  23. Castellar, M. R., Borrego, F., Cánovas, M., Manjón, A., & Iborra, J. L. (1989). Stability against stop of flow of an immobilized Zymomonas mobilis bioreactor. Biotechnology Letters, 11, 665–668.

    Article  CAS  Google Scholar 

  24. Sosnik, A., Cohn, D., Román, J. S., & Abraham, G. A. (2003). Crosslinkable PEO-PPO-PEO-based reverse thermo-responsive gels as potentially injectable materials. Journal of Biomaterials Science Polymer Edition, 14, 227–239.

    Article  CAS  Google Scholar 

  25. Kumar, M. N., Gialleli, A.-I., Masson, J. B., Kandylis, P., Bekatorou, A., Koutinas, A. A., & Kanellaki, M. (2014). Lactic acid fermentation by cells immobilised on various porous cellulosic materials and their alginate/poly-lactic acid composites. Bioresource Technology, 165, 332–335.

    Article  CAS  Google Scholar 

  26. Lee, K. H., Choi, I. S., Kim, Y.-G., Yang, D.-J., & Bae, H.-J. (2011). Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresource Technology, 102, 8191–8198.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 1159772.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dev Chidambaram.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 303 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nordmeier, A., Chidambaram, D. The Influence of Dopants on the Effectiveness of Alginate Beads in Immobilized Cell Reactors. Appl Biochem Biotechnol 178, 1503–1509 (2016). https://doi.org/10.1007/s12010-015-1963-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1963-x

Keywords

Navigation