Applied Biochemistry and Biotechnology

, Volume 178, Issue 8, pp 1488–1502 | Cite as

Electrospun Polyvinyl Alcohol/ Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing

Article

Abstract

In this study, an antibacterial electrospun nanofibers for wound dressing application was successfully prepared from polyvinyl alcohol (PVA), Pluronic F127 (Plur), polyethyleneimine (PEI) blend solution with titanium dioxide nanoparticles (TiO2 NPs). PVA–Plur–PEI nanofibers containing various ratios of TiO2 NPs were obtained. The formation and presence of TiO2 in the PVA–Plu–PEI/ TiO2 composite was confirmed by X-ray diffraction (XRD). Transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), mechanical measurement, and antibacterial activity were undertaken in order to characterize the PVA–Plur–PEI/TiO2 nanofiber morphology and properties. The PVA–Plu–PEI nanofibers had a mean diameter of 220 nm, and PVA–Plur–PEI/TiO2 nanofibers had 255 nm. Moreover, the antimicrobial properties of the composite were studied by zone inhibition against Gram-negative bacteria, and the result indicates high antibacterial activity. Results of this antibacterial testing suggest that PVA–Plur–PEI/TiO2 nanofiber may be effective in topical antibacterial treatment in wound care; thus, they are very promising in the application of wound dressings.

Keywords

Nanofibers Blend TiO2 Antibacterial Wound dressings 

References

  1. 1.
    Ramakrishna, S., Fujihara, K., Teo, W., Lim, T., & Ma, Z. (2005). An introduction to electrospinning and nanofibers (pp. 135–137). Singapore: World Scientific Publishing Co. Pte, Ltd.CrossRefGoogle Scholar
  2. 2.
    Wendorff, J. H., Agarwal, S., & Greiner, A. (2012). Electrospinning: materials, in: processing, and applications. Germany: Wiley-VCH.CrossRefGoogle Scholar
  3. 3.
    Fouda, M. G., El-Aassar, M. R., & Al-Deyab, S. S. (2013). Antimicrobial activity of carboxymethyl chitosan/polyethylene oxide nanofibers embedded silver nanoparticles. Carbohydrate Polymers, 92, 1012–1017.CrossRefGoogle Scholar
  4. 4.
    Greiner, A., & Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Nanotechnology, 46, 5670–5703.Google Scholar
  5. 5.
    Pham, Q. P., Sharma, U., & Mikos, A. G. (2006). Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Engineering, 12(5), 1197–1211.CrossRefGoogle Scholar
  6. 6.
    Roshmi, T., Soumya, K. R., Jyothis, M., & Radhakrishnan, E. K. (2015). Electrospun polycaprolactone membrane incorporated with biosynthesized silver nanoparticles as effective wound dressing material. Applied Biochemistry and Biotechnology, 176(8), 2213–2224.CrossRefGoogle Scholar
  7. 7.
    Yoshimoto, H., Shin, Y. M., Terai, H., & Vacanti, J. P. (2003). A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 24, 2077–2082.CrossRefGoogle Scholar
  8. 8.
    Agarwal, S., Wendorff, J. H., & Greiner, A. (2010). Chemistry on electrospun polymeric nanofibers: merely routine chemistry or a real challenge. Macromolecular Rapid Communications, 31, 1317–1331.CrossRefGoogle Scholar
  9. 9.
    Nitanan, T., Akkaramongkolporn, P., Rojanarata, T., Ngawhirunpat, T., & Opanasopit, P. (2013). Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials. International Journal of Pharmaceutics, 448, 71–78.CrossRefGoogle Scholar
  10. 10.
    Unnithana, A. R., Barakat, N. A. M., Pichiahd, P. B. T., Gnanasekarane, G., Nirmalab, R., Chad, Y.-S., Junge, C. H., El-Newehy, M., & Kim, H. Y. (2012). Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohydrate Polymers, 90, 1786–1793.CrossRefGoogle Scholar
  11. 11.
    Karami, Z., Rezaeian, I., Zahedi, P., & Abdollahi, M. (2013). Preparation and performance evaluations of electrospun poly(ε-caprolactone), poly(lactic acid), and their hybrid (50/50) nanofibrous mats containing thymol as an herbal drug for effective wound healing. Applied Polymer Science, 129, 756–766.CrossRefGoogle Scholar
  12. 12.
    Lin, J., Li, C., Zhao, Y., Hu, J., & Zhang, L. M. (2012). Co-electrospun nanofibrous membranes of collagen and zein for wound healing. ACS Applied Materials & Interfaces, 4, 1050–1057.CrossRefGoogle Scholar
  13. 13.
    Merrell, J. G., McLaughlin, S. W., Tie, L., Laurencin, C. T., Chen, A. F., & Nair, L. S. (2009). Curcumin loaded poly(ε-caprolactone) nanofibers: diabetic wound dressing with antioxidant and anti-inflammatory properties. Clinical and Experimental Pharmacology and Physiology, 36, 1149–1156.CrossRefGoogle Scholar
  14. 14.
    Jin, G., Prabhakaran, M. P., Kai Dan Annamalai, S. K., Arunachalam, K. D., & Ramakrishna, S. (2013). Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 34, 724–734.CrossRefGoogle Scholar
  15. 15.
    Son, B., Yeom, B.-Y., Song, S. H., Lee, C.-S., & Hwang, T. S. (2009). Antibacterial electrospun chitosan/poly(vinyl alcohol) nanofibers containing silver nitrate and titanium dioxide. Applied Polymer Science, 111, 2892–2899.CrossRefGoogle Scholar
  16. 16.
    Asran, A. S., Razghandi, K., Aggarwal, N., Michler, G. H., & Groth, T. (2010). Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin. Biomacromolecules, 11, 3413–3421.CrossRefGoogle Scholar
  17. 17.
    Abdelrahman, M. A., Samuel, M. H., & Orlando, J. R. (2014). Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydrate Polymers, 100, 166–178.CrossRefGoogle Scholar
  18. 18.
    Sarhan, W. A., & Azzazy, M. E. (2015). High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects. Carbohydrate Polymers, 122, 135–143.CrossRefGoogle Scholar
  19. 19.
    Moreno, I., González-González, V., & Romero-García, J. (2011). Control release of lactate dehydrogenase encapsulated in poly (vinyl alcohol) nanofibers via electrospinning. European Polymer Journal, 47, 1264–1272.CrossRefGoogle Scholar
  20. 20.
    Zulkifli, F. H., Shahitha, F., Yusuff, M. M., Hamidon, N. N., & Chahal, S. (2013). Cross-linking effect on electrospun hydroxyethyl cellulose/poly(vinyl alcohol) nanofibrous scaffolds. Procedia Engineering, 53, 689–695.CrossRefGoogle Scholar
  21. 21.
    Schmolka, I. R. (1972). Artificial skin I. Preparation and properties of pluronic F-127 gels for treatment of burns. Journal of Biomedical Materials Research Part A, 6, 571–582.CrossRefGoogle Scholar
  22. 22.
    Gombotz, W. R., & Pettit, D. K. (1995). Biodegradable polymers for protein and peptide drug delivery. Journal of Bioconjugate Chem, 6, 332–351.CrossRefGoogle Scholar
  23. 23.
    Jushasz, J., Lenaerts, V., Taymond, P., & Ong, H. (1989). Diffusion of rat atrial natriuretic factor in thermoreversible poloxamer gels. Biomaterials, 10, 265–268.CrossRefGoogle Scholar
  24. 24.
    Viegas, T.X., Reeve, L.E., and Levinson, R.S. (1994). U.S. Patent, 5,306,501.Google Scholar
  25. 25.
    Viegas, T.X., Reeve, L.E., & Henry, R.L. (1994). U.S. patent, 5,346,703,.Google Scholar
  26. 26.
    El-Aassar, M. R. (2013). Functionalized electrospun nanofibers from poly (AN-co-MMA) for enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic, 85, 140–148.CrossRefGoogle Scholar
  27. 27.
    El-Aassar, M. R., Al-Deyab, S. S., & Kenawy, E. (2013). Covalent immobilization of β-galactosidase onto electrospun nanofibers of poly (AN-co-MMA) copolymer. Applied Polymer Science, 127, 1873–1884.CrossRefGoogle Scholar
  28. 28.
    Wist, J., Sanabria, J., Dierolf, C., Torres, W., & Pulgarin, C. (2004). Evaluation of photocatalytic disinfection of crude water for drinking water production. Journal of Photochemistry and Photobiology A: Chemistry, 147, 241–246.CrossRefGoogle Scholar
  29. 29.
    Grassian, V. H., Oshaughnessy, P. T., Adamcakova-Dodd, A., Pettibone, J. M., & Thorne, P. S. (2007). Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environmental Health Perspectives, 115, 397–402.CrossRefGoogle Scholar
  30. 30.
    Borenfreund, E., & Puerner, J. A. (1985). Toxicity determinedin vitro by morphological alterations and neutral red absorption. Toxicology Letters, 24, 119–124.CrossRefGoogle Scholar
  31. 31.
    Bechert, T., Steinrücke, P., & Guggenbichler, J. P. (2000). A new method for screening anti-infective biomaterials. Journal of Natural Medicines, 6, 1053–1056.CrossRefGoogle Scholar
  32. 32.
    Kitkulnumchai, Y., Ajavakom, A., & Sukwattanasinitt, M. (2008). Treatment of oxidized cellulose fabric with chitosan and its surface activity towards anionic reactive dyes. Cellulose, 15, 599–608.CrossRefGoogle Scholar
  33. 33.
    Thamaphat, K., Limsuwan, P., & Ngotawornchai, B. (2008). Phase characterization of TiO2 powder by XRD and TEM. Journal of Natural Sciences, 42, 357–361.Google Scholar
  34. 34.
    Shalumon, K. T., Binulal, N. S., Selvamurugan, N., Nair, S. V., Menon, D., & Furuike, T. (2009). Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydrate Polymers, 77, 863–869.CrossRefGoogle Scholar
  35. 35.
    Cetiner, S., Kalaoglu, F., Karakas, H., & Sarac, A. S. (2010). Electrospun nanofibers of polypyrrole-poly(acrylonitrile-co-vinyl acetate). Textile Research Journal, 80, 1784–1792.CrossRefGoogle Scholar
  36. 36.
    Hsu, S. H., Chou, C. W., & Tseng, S. M. (2004). Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites. Macromolecular Materials and Engineering, 289, 1096–1101.CrossRefGoogle Scholar
  37. 37.
    Shi, H., Magaye, R., Castranovaand, V., & Zhao, J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data. Particle and Fiber Toxicology, 10, 15.CrossRefGoogle Scholar
  38. 38.
    Lee, S., Pereira, B. P., & Yusof, N. (2009). Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration. Acta Biomaterialia, 5, 1919–1925.CrossRefGoogle Scholar
  39. 39.
    Chuang, W., Young, T., Yao, C., & Chiu, W. (1999). Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials, 20, 1479–1487.CrossRefGoogle Scholar
  40. 40.
    Ramovatar, M., Kumari, K., & Paulraj, R. (2015). Cytotoxic and genotoxic effects of titanium dioxide nanoparticles in testicular cells of male wistar rat. Applied Biochemistry and Biotechnology, 175(2), 825–840.CrossRefGoogle Scholar
  41. 41.
    Shah, M. S. A., Nag, M., Kalagara, T., Singh, S., & Manorama, S. V. (2008). Silver on PEG-PU TiO2 polymer nanocomposite films; an excellent system for antibacterial applications. Materials Chemistry, 20, 2455–2460.CrossRefGoogle Scholar
  42. 42.
    Weir, E., Lawlor, A., Whelan, A., & Regan, F. (2008). The use of nanoparticles in anti-microbial materials and their characterization. Analyst, 133, 835–845.CrossRefGoogle Scholar
  43. 43.
    Roy, S. C., Varghese, O. K., Paulose, M., & Grimes, C. A. (2010). Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 4, 1259–1278.CrossRefGoogle Scholar
  44. 44.
    Vincent, M. G., John, P. N., Narayanan, P. M., Vani, C., & Sevanan, M. (2014). In vitro study on the efficacy of zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. Applied Pharmaceutical Science, 4, 41–46.Google Scholar
  45. 45.
    Santhoshkumar, T., Rahuman, A., Jayaseelan, G., & Rajakumar, G. (2015). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pacific Journal of Tropical Medicine, 7(12), 968–976.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Colleges of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiChina
  2. 2.Polymer Materials Research Department, Advanced Technology and New Material Research InstituteCity of Scientific Research and Technological Applications (SRTA-City)New Borg El-Arab CityEgypt
  3. 3.Biopharmaceutical Product Research Department, Genetic Engineering and Biotechnology Research InstituteCity of Scientific Researches and Technological Applications (SRTA-City)New Borg El-Arab CityEgypt
  4. 4.Electronic Materials Researches Department, Institute of Advanced Technology and New Material Research InstituteCity of Scientific Researches and technological applications (SRTA-City)New Borg El-Arab CityEgypt

Personalised recommendations