Skip to main content
Log in

Plasma Functionalized Multiwalled Carbon Nanotubes for Immobilization of Candida antarctica Lipase B: Production of Biodiesel from Methanolysis of Rapeseed Oil

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Surface modification of multiwalled carbon nanotubes (MWCNTs) through functionalization could improve the characteristics of these nanomaterials as support for enzymes. Carboxylation of MWCNTs (MWCNT-COOH) has been carried out in this study using the dielectric barrier discharge (DBD) plasma reactor through humidified air. The chemical method was also used for further functionalization of the MWCNT-COOH through which the amidation of the surfaces with either butylamine (MWCNT-BA) or octadecylamine (MWCNT-OA) was performed. By immobilization of Candida antarctica B lipase (CALB) on these nanoparticles, performance of the immobilized enzyme in catalyzing methanolysis of rapeseed oil was evaluated. The CALB loading on the MWCNT-BA and MWCNT-COOH was 20 mg protein/g, while the value for MWCNT-OA was 11 mg protein/g. The yield of biodiesel was determined as percentage of mass of fatty acid methyl ester (FAME) produced per initial mass of the oil, and the yield value for the two of these three supports namely, MWCNT-COOH and MWCNT-BA used for the CALB immobilization was similar at about 92 %, while 86 % was the yield for the reaction catalyzed by the lipase immobilized on MWCNT-OA. Thermal stability of the immobilized CALB and the catalytic ability of the enzyme in the repeated batch experiments have also been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Houde, A., Kademi, A., & Leblanc, D. (2004). Lipases and their industrial applications: an overview. Applied Biochemistry Biotechnology, 118, 155–170.

    Article  CAS  Google Scholar 

  2. Schmid, R. D., & Verger, R. (1998). Lipases: interfacial enzymes with attractive applications. Angewandte Chemie International Edition, 37, 1608–1633.

    Article  Google Scholar 

  3. Bajaj, A., Lohan, P., Jha, P. N., & Mehrotra, R. (2010). Biodiesel production through lipase catalyzed transesterification: an overview. Journal of Molecular Catalysis B: Enzymatic, 62, 9–14.

    Article  CAS  Google Scholar 

  4. Christopher, L. P., Kumar, H., & Zambare, V. P. (2014). Enzymatic biodiesel: challenges and opportunities. Applied Energy, 119, 497–520.

    Article  CAS  Google Scholar 

  5. Li, C., Tan, T., Zhang, H., & Feng, W. (2010). Analysis of the conformational stability and activity of Candida antarctica lipase in organic solvent insight from molecular dynamics and quantum mechanics/simulations. Journal of Biological Chemistry, 28, 28434–28441.

    Article  Google Scholar 

  6. Park, H. J., Park, K., & Yoo, Y. J. (2013). Understanding the effect of tert-butanol on Candida antarctica lipase B using molecular dynamics simulations. Molecular Simulation, 39, 653–659.

    Article  CAS  Google Scholar 

  7. Trodler, P., & Pleiss, J. (2008). Modeling structure and flexibility of Candida antarctica lipase B in organic solvents. BMC Structural Biology, 8, 9.

    Article  Google Scholar 

  8. Turkan, A., & Kalay, S. (2008). Study of the mechanism of lipase-catalyzed methanolysis of sunflower oil in tert-butanol and heptanes. Turkey Journal Biochemistry, 33, 45–49.

    CAS  Google Scholar 

  9. Lee, K. W., Min, K., Park, K., & Yoo, Y. J. (2010). Development of an amphiphilic matrix for immobilization of Candida antarctica lipase B for biodiesel production. Biotechnology and Bioprocess Engineering, 15, 603–607.

    Article  CAS  Google Scholar 

  10. Dossat, V., Combes, D., & Marty, A. (1999). Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: influence of the glycerol production. Enzyme and Microbial Technology, 25, 194–200.

    Article  CAS  Google Scholar 

  11. Kawakami, K., Oda, Y., & Takahashi, R. (2011). Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil. Biotechnology for Biofuels, 4, 42.

    Article  CAS  Google Scholar 

  12. Feng, W., & Ji, P. (2011). Enzymes immobilized on carbon nanotubes. Biotechnology Advances, 29, 889–895.

    Article  CAS  Google Scholar 

  13. Pavlidis, I. V., Vorhaben, T., Tsoufis, T., Rudolf, P., Bornscheuer, U. T., Gournis, D., & Stamatis, H. (2012). Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresource Technology, 115, 164–171.

    Article  CAS  Google Scholar 

  14. Verma, M. L., Naebe, M., Barrow, C. J., & Puri, M. (2013). Enzyme immobilization on amino-functionalized multiwalled carbon nanotubes: structural and biocatalytic characterization. PLoS One, 8, e73642.

    Article  CAS  Google Scholar 

  15. Pourfayaz, F., Mortazavi, Y., Khodadadi, A. A., & Jafari, S. H. (2012). Rapid and enhancement functionalization of MWCNTs in a dielectric barrier discharge plasma in presence of diluted CO2. Applied Physics A, 106, 829–836.

    Article  CAS  Google Scholar 

  16. Rastian, Z., Khodadadi, A. A., Vahabzadeh, F., Bortolin, C., Dong, M., Mortazavi, Y., Mogharei, A., Vesali-Naseh, M., & Guo, Z. (2014). Facile surface functionalization of multiwalled carbon nanotubes by soft dielectric barrier discharge plasma: generate compatible interface for lipase immobilization. Biochemical Engineering Journal, 90, 16–26.

    Article  CAS  Google Scholar 

  17. Vesali-Naseh, M., Mortazavi, Y., Khodadadi, A. A., Parsaeian, P., & Moosavi-Movahed, A. A. (2013). Plasma thiol-functionalized carbon nanotubes decorated with gold nanoparticles for glucose biosensor. Sensors and Actuators, B, 188, 488–495.

    Article  CAS  Google Scholar 

  18. Aitchison, T. J., Ginic-Markovic, M., Matisons, J. G., Simon, G. P., & Fredericks, P. M. (2007). Purification, cutting, and sidewall functionalization of multiwalled carbon nanotubes using potassium permanganate solutions. Journal of Physical Chemistry C, 111, 2440–2446.

    Article  CAS  Google Scholar 

  19. Yu, B.-Z., Yang, J.-S., & Li, W.-X. (2007). In vitro capability of multi-walled carbon nanotubes modified with gonadotrophin releasing hormone on killing cancer cells. Carbon, 45, 1921–1927.

    Article  CAS  Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  21. Fedosov, S. N., Brask, J., & Xu, X. (2012). Microtitration of free fatty acids in oil and biodiesel samples using absorbance and/or fluorescence of pyranine. Journal of American Oil Chemistry Society, 89, 2155–2163.

    Article  CAS  Google Scholar 

  22. Shantha, N. C. (1992). Thin-layer chromatography-flame ionization detection Iatroscan system. Journal of Chromatography A, 624, 21–35.

    Article  CAS  Google Scholar 

  23. Freedman, B., Pryde, E. H., & Mounts, T. L. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of American Oil Chemistry Society, 61, 1638–1643.

    Article  CAS  Google Scholar 

  24. Fedosov, S. N., Brask, J., & Xu, X. (2011). Analysis of biodiesel conversion using thin layer chromatography and nonlinear calibration curves. Journal of Chromatography A, 1218, 2785–2792.

    Article  CAS  Google Scholar 

  25. Ruelle, B., Peeterbroeck, S., Godfroid, T., Bittencourt, C., Hecq, M., Snyders, M., & Dubois, P. (2012). Selective grafting of primary amines onto carbon nanotubes via free-radical treatment in microwave plasma post-discharge. Polymers., 4, 296–315.

    Article  Google Scholar 

  26. Vesali Naseh, M., Khodadadi, A. A., Mortazavi, Y., Alizadeh Sahraei, O., Pourfayaz, F., & Mosadegh Sadeghi, S. (2009). Functionalization of carbon nanotubes using nitric acid oxidation and DBD plasma. International Journal of Chemical and Biological Engineering., 2, 66–68.

    CAS  Google Scholar 

  27. Rodrigues, D. S., Cavalcante, G. P., Ferreira, A. L. O., & Gonçalves, L. R. B. (2008). Immobilization of Candida antarctica lipase type B by adsorption on activated carbon. Chemical and Biochemical Engineering Quarterly, 22(1), 125–133.

    CAS  Google Scholar 

  28. Zubay, G. L. (1983). Biochemistry. Boston, US: Addison-Wesly Educational Publishers Inc.

    Google Scholar 

  29. Royon, D., Daz, M., Ellenrieder, G., & Locatelli, S. (2007). Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technology, 98, 648–653.

    Article  CAS  Google Scholar 

  30. Hansen, C. (1999). Hansen solubility parameters: a user’s handbook. Boca Raton Florida, US: CRC Press, Inc.

    Book  Google Scholar 

  31. Azocar, L., Navia, R., Beroiz, L., Jeison, D., & Ciudad, G. (2014). Enzymatic biodiesel production kinetics using co-solvent and an anhydrous medium: a strategy to improve lipase performance in a semi-continuous reactor. New Biotechnology, 31, 422–429.

    Article  CAS  Google Scholar 

  32. Yucel, Y., Demir, C., Dizge, N., & Keskinler, B. (2014). Methods for lipase immobilization and their use for biodiesel production from vegetable oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36, 1203–2011.

    Article  CAS  Google Scholar 

  33. Winayanuwattikun, P., Kaewpiboon, C., Piriyakananon, K., Chulalaksananukul, W., Yongvanich, T., & Svasti, J. (2011). Immobilized lipase from potential lipolytic microbes for catalyzing biodiesel production using palm oil as feedstock. African Journal of Biotechnology, 10, 1666–1673.

    CAS  Google Scholar 

  34. Valivetry, R. H., Halling, P. J., & Macrae, A. R. (1992). Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents. Biochimica et Biophysica Acta, 1118, 218–222.

    Article  Google Scholar 

  35. Valivety, R. H., Halling, P. J., & Macrae, A. R. (1992). Lipases from different sources vary widely in dependence of catalytic activity on water activity. Biochimica et Biophysica Acta, 1122, 143–146.

    Article  CAS  Google Scholar 

  36. Wehtje, E., & Adlercreutz, P. (1997). Lipases have similar water activity profiles in different reactions. Biotechnology Letters, 19, 537–540.

    Article  CAS  Google Scholar 

  37. Ma, L., Persson, M., & Adlercreutz, P. (2002). Water activity dependence of lipase catalysis in organic media explains successful transesterification reactions. Enzyme and Microbial Technology, 31, 1024–1029.

    Article  CAS  Google Scholar 

  38. Valivety, R. H., Halling, P. J., & Macrae, A. R. (1992). Rhizomucor miehei lipase remains highly active at water activity below 0.0001. FEBS Letters, 301, 258–260.

    Article  CAS  Google Scholar 

  39. Shimada, Y., Watanabe, Y., Sugihara, A., & Tominaga, Y. (2002). Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. Journal of Molecular Catalysis B: Enzymatic, 17, 133–142.

    Article  CAS  Google Scholar 

  40. Su, E.-Z., Zhang, M.-J., Zhang, J.-G., Gao, J.-F., & Wei, D.-Z. (2007). Lipase-catalyzed irreversible transesterification of vegetable oils for fatty acid methyl esters production with dimethyl carbonate as the acyl acceptor. Biochemical Engineering Journal, 36, 167–173.

    Article  CAS  Google Scholar 

  41. Chen, Y. Z., Ching, C. B., & Xu, R. (2009). Lipase immobilization on modified zirconia nanoparticles: studies on the effects of modifiers. Process Biochemistry, 44, 1245–1251.

    Article  CAS  Google Scholar 

  42. Li, L., Du, W., Liu, D., Wang, L., & Li, Z. (2006). Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. Journal of Molecular Catalysis B: Enzymatic, 43, 58–62.

    Article  CAS  Google Scholar 

  43. Chen, Y., Xiao, B., Chang, J., Fu, Y., Lv, P., & Wang, X. (2009). Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor. Energy Conversion and Management, 50, 668–673.

    Article  CAS  Google Scholar 

  44. Devi, P. B. L. A., Guo, Z., & Xu, X. (2011). Characterization of ionic liquid-based biocatalytic two-phase reaction system for production of biodiesel. AICHE Journal, 57, 1628–1637.

    Article  CAS  Google Scholar 

  45. Ozmen, E. Y., & Yilmaz, M. (2009). Pretreatment of Candida rugosa lipase with soybean oil before immobilization on β-cyclodextrin-based polymer. Colloids and Surfaces B: Biointerfaces, 69, 58–62.

    Article  CAS  Google Scholar 

  46. Martinelle, M., Holmquist, M., & Hult, K. (1995). On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginose lipase. Biochimica et Biophysica Acta, Lipids and Lipid Metabolism, 1258, 272–276.

    Article  Google Scholar 

  47. Lee, D.-G., Ponvel, K. M., Kim, M., Hwang, S., Ahn, I. S., & Lee, C.-H. (2009). Immobilization of lipase on hydrophobic nano-sized magnetite particles. Journal of Molecular Catalysis B: Enzymatic, 57, 62–66.

    Article  CAS  Google Scholar 

  48. Hsu, A. F., Jones, K., Marmer, W. N., & Foglia, T. A. (2001). Production of alkyl esters from tallow and grease using lipase immobilized in a phyllosilicate sol–gel. Journal of American Oil Chemistry Society, 78, 585–588.

    Article  CAS  Google Scholar 

  49. Lu, J., Nie, K., Xie, F., Wang, F., & Tan, T. (2007). Enzymatic synthesis of fatty acid methyl esters from Lard with immobilized Candida sp. 99–125. Process Biochemistry, 42, 1367–1370.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by engineering department of Tehran University and Aarhus University. Assistance of Flemming Lund Sorensen in the engineering department of Aarhus University is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abbas Ali Khodadadi or Farzaneh Vahabzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastian, Z., Khodadadi, A.A., Guo, Z. et al. Plasma Functionalized Multiwalled Carbon Nanotubes for Immobilization of Candida antarctica Lipase B: Production of Biodiesel from Methanolysis of Rapeseed Oil. Appl Biochem Biotechnol 178, 974–989 (2016). https://doi.org/10.1007/s12010-015-1922-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1922-6

Keywords

Navigation