Skip to main content
Log in

Characteristics of a Novel Aerobic Denitrifying Bacterium, Enterobacter cloacae Strain HNR

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel aerobic denitrifier strain HNR, isolated from activated sludge, was identified as Enterobacter cloacae by16S rRNA sequencing analysis. Glucose was considered as the most favorable C-source for strain HNR. The logistic equation well described the bacterial growth, yielding a maximum growth rate (μmax) of 0.283 h−1 with an initial NO3 -N concentration of 110 mg/L. Almost all NO3 -N was removed aerobically within 30 h with an average removal rate of 4.58 mg N L−1 h−1. Nitrogen balance analysis revealed that proximately 70.8 % of NO3 -N was removed as gas products and only 20.7 % was transformed into biomass. GC-MS result indicates that N2 was the end product of aerobic denitrification. The enzyme activities of nitrate reductase and nitrite reductase, which are related to the process of aerobic denitrification, were 0.0688 and 0.0054 U/mg protein, respectively. Thus, the aerobic denitrification of reducing NO3 to N2 by strain HNR was demonstrated. The optimal conditions for nitrate removal were C/N ratio 13, pH value 8, shaking speed 127 rpm and temperature 30 °C. These findings show that E. cloacae strain HNR has a potential application on wastewater treatment to achieve nitrate removal under aerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kesik, M., Blagodatsky, S., Papen, H., & Butterbach -Bahl, K. (2006). Effect of pH, temperature and substrate on N2O, NO and CO2 production by Alcaligenes faecalis sp. Journal of Applied Microbiology, 101, 655–667.

    Article  CAS  Google Scholar 

  2. Baytshtok, V., Lu, H., Park, H., Kim, S., Yu, R., & Chandran, K. (2009). Impact of varying electron donors on the molecular microbial ecology and biokinetics of methylotrophic denitrifying bacteria. Biotechnology and Bioengineering, 102, 1527–1536.

    Article  CAS  Google Scholar 

  3. Islam, M., George, N., Zhu, J., & Chowdhury, N. (2009). Impact of carbon to nitrogen ratio on nutrient removal in a liquid–solid circulating fluidized bed bioreactor (LSCFB). Process Biochemistry, 44, 578–583.

    Article  CAS  Google Scholar 

  4. Robertson, L. A., & Kuenen, J. G. (1984). Heterotrophic nitrification in Thisophaera pantotropha: oxygen uptake and enzyme studies. Journal of General Microbiology, 134, 857–863.

    Google Scholar 

  5. Wan, C., Yang, X., Lee, D. J., Du, M., Wan, F., & Chen, C. (2011). Aerobic denitrification by novel isolated strain using NO2 -N as nitrogen source. Bioresource Technology, 102, 7244–7248.

    Article  CAS  Google Scholar 

  6. Yang, X. P., Wang, S. M., Zhang, D. W., & Zhou, L. X. (2011). Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus subtilis A1. Bioresource Technology, 102, 854–862.

    Article  CAS  Google Scholar 

  7. Chen, Q., & Ni, J. R. (2012). Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification-aerobic denitrification. Journal of Bioscience and Bioengineering, 113, 619–623.

    Article  CAS  Google Scholar 

  8. Zheng, H. Y., Liu, Y., Gao, X. Y., Ai, G. M., Miao, L. L., & Liu, Z. P. (2012). Characterization of a marine origin aerobic nitrifying-denitrifying bacterium. Journal of Bioscience and Bioengineering, 114, 33–37.

    Article  CAS  Google Scholar 

  9. Chen, P. Z., Li, J., Li, Q. X., Wang, Y. C., Li, S. P., Ren, T. Z., & Wang, L. G. (2012). Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp.CPZ24. Bioresource Technology, 116, 266–270.

    Article  CAS  Google Scholar 

  10. Tatusova, T. A., & Madden, T. L. (1999). BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiology Letters, 174, 247–250.

    Article  CAS  Google Scholar 

  11. Kumar, S., Nei, M., Dudley, J., & Tamura, K. (2008). MEGA: a biologist centric software for evolutionary analysis of DNA and protein sequence. Briefings in Bioinformatics, 9, 299–306.

    Article  CAS  Google Scholar 

  12. Yao, S., Ni, J. R., Ma, T., & Li, C. (2013). Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2. Bioresource Technology, 139, 80–86.

    Article  CAS  Google Scholar 

  13. Zhao, B., He, Y. L., Hughes, J., & Zhang, X. F. (2010). Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR. Bioresource Technology, 101, 5194–5200.

    Article  CAS  Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  15. Ren, Y. X., Yang, L., & Liang, X. (2014). The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB. Bioresource Technology, 171, 1–9.

    Article  CAS  Google Scholar 

  16. APHA. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  17. Frear, D. S., & Burrell, R. C. (1955). Spectrophotometric methods for determining hydroxylamine reductase activity in higher plants. Analytical Chemistry, 27, 1664–1665.

    Article  CAS  Google Scholar 

  18. Her, J. J., & Huang, J. S. (1995). Influences of carbon source and C/N ratio on nitrate/nitrate denitrification and carbon breakthrough. Bioresource Technology, 54, 45–51.

    Article  CAS  Google Scholar 

  19. Elefsiniotis, P., Wareham, D. G., & Smith, M. O. (2004). Use of volatile fatty acids from an acid-phase digester for denitrification. Journal of Biotechnology, 114, 289–297.

    Article  CAS  Google Scholar 

  20. Shrimali, M., & Singh, K. P. (2001). New methods of nitrate removal from water. Environmental Pollution, 112, 351–359.

    Article  CAS  Google Scholar 

  21. Takaya, N., Catalan-Sakairi, M. A. B., Sakaguchi, Y., Kato, I., Zhou, Z. M., & Shoun, H. (2003). Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Applied and Environmental Microbiology, 69, 3152–3157.

    Article  CAS  Google Scholar 

  22. Patureau, D., Bernet, N., Delgenes, J. P., & Moletta, R. (2000). Effect of dissolved oxygen and carbon–nitrogen loads on denitrification by an aerobic consortium. Applied Microbiology and Biotechnology, 54, 535–542.

    Article  CAS  Google Scholar 

  23. Richardson, D. J., & Watmough, N. J. (1999). Inorganic nitrogen metabolism in bacteria. Current Opinion in Chemical Biology, 3, 207–219.

    Article  CAS  Google Scholar 

  24. Padhi, S. K., Tripathy, S., & Sen, R. (2013). Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater. International Biodeterioration and Biodegradation, 78, 67–73.

    Article  CAS  Google Scholar 

  25. Shi, Z., Zhang, Y., Zhou, J. T., Chen, M. X., & Wang, X. J. (2013). Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM. Bioresource Technology, 148, 144–148.

    Article  CAS  Google Scholar 

  26. Robertson, L. A., & Kuenen, J. G. (1990). Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Antonie Van Leeuwenhoek, 57, 139–152.

    Article  CAS  Google Scholar 

  27. Kim, M., Jeong, S. Y., Yoon, S. J., Cho, S. J., Kim, Y. H., Kim, M. J., Ryu, E. Y., & Lee, S. J. (2008). Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratio. Journal of Bioscience and Bioengineering, 106, 498–502.

    Article  CAS  Google Scholar 

  28. Huang, H. K., & Tseng, S. K. (2001). Nitrate reduction by Citrobacter diversus under aerobic environment. Applied Microbiology and Biotechnology, 55, 90–94.

    Article  CAS  Google Scholar 

  29. Lloyd, D., Boddy, L., & Davies, K. J. P. (1987). Persistence of bacterial denitrification capacity under aerobic condition: the rule rather than the exception. FEMS Microbiology Ecology, 45, 185–190.

    Article  CAS  Google Scholar 

  30. Joo, H. S., Hirai, M., & Shoda, M. (2005). Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis no.4. Journal of Bioscience and Bioengineering, 100, 184–191.

    Article  CAS  Google Scholar 

  31. Guo, Y., Zhou, X., Li, Y., Li, K., Wang, C., Liu, J., & Xing, J. (2013). Heterotrophic nitrification and aerobic denitrification by a novel Halomonas campisalis. Biotechnology Letters, 35, 2045–2049.

    Article  CAS  Google Scholar 

  32. Zhang, J., Wu, P., Hao, B., & Yu, Z. (2011). Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresource Technology, 102, 9866–9869.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51208534/51209240) and Fundamental Research Funds for the Central Universities (No. 106112013 CDJZR 210003). We would also like to thank 111 Project (No. B13041) for providing their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhao.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 47 kb)

Table S1

(DOCX 19 kb)

Table S2

(DOCX 19 kb)

Table S3

(DOCX 20 kb)

Table S4

(DOCX 19 kb)

Table S5

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, LJ., Zhao, B., An, Q. et al. Characteristics of a Novel Aerobic Denitrifying Bacterium, Enterobacter cloacae Strain HNR. Appl Biochem Biotechnol 178, 947–959 (2016). https://doi.org/10.1007/s12010-015-1920-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1920-8

Keywords

Navigation