Skip to main content
Log in

Effect of Drought Stress on Total Phenolic, Lipid Peroxidation, and Antioxidant Activity of Achillea Species

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The changes in total phenolic content (TPC), total flavonoid content (TFC), proline, malondialdehyde (MDA), H2O2, and antioxidant activity were assessed based on three model systems in three Achillea species (Achillea millefolium, A. nobilis, and A. filipendulina) growing under four irrigation regimes, including 100 % FC (field capacity as normal irrigation) 75 % FC (low stress), 50 % FC (moderate stress), and 25 % FC (severe stress) conditions. The highest TPC (47.13 mg tannic acid/g DW) and TFC (20.86 mg quercetin/g W) were obtained in A. filipendulina under moderate and severe stress conditions. In 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, the highest and the lowest antioxidant activity was obtained for A. millefolium (70.28 %) and A. filipendulina (53.21 %), respectively, while in the FTC model system A. nobilis revealed the highest antioxidant activity (1.934) in severe drought condition. In the linoleic model system, the highest antioxidant activity was observed under low drought stress condition in A. nobilis. MDA and H2O2 content were increased due to both low (75 % FC) and moderate (50 % FC) drought stress, but they were decreased under severe stress condition (25 % FC). Furthermore, A. millefolium revealed the lowest H2O2 (4.96 nm/g FW) and MDA content (176.32 μmol/g). Investigation of the relationship among different metabolites showed a strong positive correlation with TPC and TFC. Finally, the moderate drought stress treatment (50 % FC) was introduced as the optimum condition to obtain appreciable TPC and TFC,, while the highest antioxidant activity was obtained in severe stress condition (25%FC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sökmen, M., Serkedjieva, J., Daferera, D., Gulluce, M., Polissiou, M., Tepe, B., Akpulat, A., Sahin, F., & Sökmen, A. (2004). In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acuities. Journal of Agricultural and Food Chemistry, 52, 3309–3311.

    Article  Google Scholar 

  2. Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6, 1720–1731.

    Article  CAS  Google Scholar 

  3. Selmar, D., & Kleinwächter, M. (2013). Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Industrial Crop Production, 42, 558–566.

    Article  CAS  Google Scholar 

  4. De Abreu, I. N., & Mazzafera, P. (2005). Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiology and Biochemistry, 43, 241–248.

    Article  Google Scholar 

  5. Nogue’s, S., Allen, D. J., Morison, J. I. L., & Baker, N. R. (1998). Ultraviolet-B radiation effects on water relations, leaf development and photosynthesis in droughted pea plants. Plant Physiology, 117, 173–181.

    Article  Google Scholar 

  6. Zahir, A., Abbasi, B. H., Adil, M., Anjum, S., Zia, M., & Ul-Haq, I. (2014). Synergistic effects of drought stress and photoperiods on phenology and secondary metabolism of Silybum marianum. Applied Biochemistry and Biotechnology, 174(2), 693–707.

    Article  CAS  Google Scholar 

  7. Azooz, M. M., Ismail, A. M., & Abou-Elhamd, M. F. (2009). Growth, lipid peroxidation and antioxidant enzyme activities as a selection criterion for the salt tolerance of three maize cultivars grown under salinity stress. International Journal of Agriculture and Biology, 11, 21–26.

    CAS  Google Scholar 

  8. Cunhua, S., Wei, D., Xiangling, C., Xinna, X., Yahong, Z., Dong, S., & Jianjie, S. (2010). The effects of drought stress on the activity of acid phosphatase and its protective enzymes in pigweed leaves. African Journal of Biotechnology, 9, 825–833.

    Google Scholar 

  9. Isaak, C. K., Petkau, J. C., Karmin, O., Ominski, K., Rodriguez-Lecompte, J. C., & Siow, Y. L. (2013). Seasonal variations in phenolic compounds and antioxidant capacity of Cornus stolonifera plant material. Canadian Journal of Plant Science, 93, 1–10.

    Article  Google Scholar 

  10. Mirzaee, M., Moieni, A., & Ghanati, F. (2013). Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola (Brassica napus L.) cultivars. Journal Agricultural Science Technology, 15, 593–602.

    CAS  Google Scholar 

  11. Chandra Rai, A., Singh, M., & Shah, K. (2012). Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiology and Biochemistry, 61, 108–114.

    Article  CAS  Google Scholar 

  12. Asgarirad, H., Pourmorad, F., Hosseinimehr, S., Saeidnia, J., Ebrahimzadeh, S., & Lotfi, F. (2010). In vitro antioxidant analysis of Achillea tenuifolia. African Journal of Biotechnology, 9(24), 3536–3541.

    Google Scholar 

  13. Trumbeckaite, S., Benetis, R., Bumblauskiene, L., Burdulis, D., Janulis, V., Toleikis, A., Viškelis, P., & Jakštas, V. (2011). Achillea millefoilum L. s.l. herb extract: antioxidant activity and effect on the rat heart mitochondrial functions. Food Chemistry, 15, 1540–1548.

    Article  Google Scholar 

  14. Rahimmalek, M., Sayed Tabatabaei, B. E., Etemadi, N., Goli, S. A. H., Arzani, A., & Zeinali, H. (2009). Essential oil variation among and within six Achillea species transferred from different ecological regions in Iran to the field conditions. Industrial Crop Production, 29, 348–355.

    Article  CAS  Google Scholar 

  15. Rechinger, K. H. (1963). Flora Iranica. Akademische Druke-U. Verlagsanstalt, Wien. Austria, 158, 49–71.

    Google Scholar 

  16. Fathi, H., LashtooAghaee, B., & Ebrahimzadeh, M. A. (2011). Antioxidant activity and phenolic contents of Achillea wilhemsii. Pharmacologyonline, 2, 942–949.

    Google Scholar 

  17. Giorgi, A., Bombelli, R., Luini, A., Speranza, G., Cosentino, M., Lecchini, S., Cocucci, M., & Jakštas, V. (2009). Antioxidant and cytoprotective properties of infusions from leaves and inflorescences of Achillea collina becker ex Rchb. Phytotherapy Research, 23, 540–545.

    Article  Google Scholar 

  18. Candan, F., Unlu, M., Tepe, B., & Daferera, D. (2003). Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium ssp. millefolium (Asteraceae). J. Ethnopharmacology, 87, 215–220.

    Article  CAS  Google Scholar 

  19. Vitalini, S., Giangiacomo, B., Iriti, M., Orsenigo, S., Iorizzi, M., & Gelsomina, F. (2011). Phenolic compounds from Achillea millefolium L. and their bioactivity. Acta Biochimica Polonica, 58, 203–209.

    CAS  Google Scholar 

  20. Manayi, A., Mirnezami, T., Saeidnia, S., & Ajani, Y. (2012). Pharmacognostical evaluation, phytochemical analysis and antioxidant activity of roots of Achillea tenuifolia Lam. International Journal of Pharmacognosy, 4, 14–30.

    Article  Google Scholar 

  21. Gharibi, S., Tabatabaei, B. E. S., Saeidi, G., Goli, S. A. H., & Talebi, M. (2013). Total phenolic content and antioxidant activity of three Iranian endemic Achillea species. Industrial Crop Production, 50, 154–158.

    Article  CAS  Google Scholar 

  22. Pinelo, M., Rubilar, M., Sineiro, J., & Núñez, M. J. (2004). Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chemistry, 85, 267–273.

    Article  CAS  Google Scholar 

  23. Braca, A., Sortino, C., Politi, M., Morelli, I., & Mendez, J. (2002). Antioxidant activity of flavonoids from Licania licaniaeflora. Journal of Ethnopharmacology, 79, 379–381.

    Article  CAS  Google Scholar 

  24. Gursoy, N., Sarikurkcu, C., Cengiz, M., & Solak, M. H. (2009). Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food and Chemical Toxicology, 47, 2381–2388.

    Article  CAS  Google Scholar 

  25. Kulisic, T., Radonic, A., Katalinic, V., & Milos, M. (2004). Use of different method for testing antioxidative activity of oregano essential oil. Food Chemistry, 85, 633–640.

    Article  CAS  Google Scholar 

  26. Ardestani, A., & Yazdanparast, R. (2007). Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chemistry, 104, 21–29.

    Article  CAS  Google Scholar 

  27. Hossain, M. A., Muhammad, M. D., Charles, G., & Muhammad, I. (2011). In vitro total phenolics, flavonoids contents and antioxidant activity of essential oil, various organic extracts from the leaves of tropical medicinal plant Tetrastigma from Sabah. Asian Pacific Jounal Trop Medical, 4(9), 717–721.

    Article  CAS  Google Scholar 

  28. Zhao, F., Guo, S., Zhang, H., & Zhao, Y. (2006). Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Science, 170, 216–224.

    Article  CAS  Google Scholar 

  29. Bates, L. S., Waldern, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207.

    Article  CAS  Google Scholar 

  30. Yordanov, I., Velikova, V., & Tsonev, T. (2000). Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 38, 171–186.

    Article  CAS  Google Scholar 

  31. Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189–1202.

    Article  CAS  Google Scholar 

  32. Cao, G., Sofic, E., & Prior, R. L. (1996). Antioxidant capacity of tea and common vegetables. Journal of Agricultural and Food Chemistry, 44, 3426–3431.

    Article  CAS  Google Scholar 

  33. Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49(11), 5165–5170.

    Article  CAS  Google Scholar 

  34. Espinozaa, A., Martína, A. S., López-Climentb, M., Ruiz-Laraa, S., Gómez-Cadenasb, A., & Casarettoa, J. (2013). Engineered drought-induced biosynthesis of α-tocopherol alleviates stress-induced leaf damage in tobacco. Journal of Plant Physiology, 170, 1285–1294.

    Article  Google Scholar 

  35. Lin, K. H., Chao, P. Y., Yang, C. M., Cheng, W. C., Lo, H. F., & Chang, T. R. (2006). The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Botanical Studies, 47, 417–426.

    CAS  Google Scholar 

  36. Van Li, L., & Staden, J. (1998). Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. Plant Growth Regulation, 24, 55–66.

    Article  Google Scholar 

  37. Sairam, R. K., Deshmukh, P. S., & Saxena, D. C. (1998). Role of antioxidant systems in wheat genotypes tolerance to water stress. Biology Plantrum, 41, 387–394.

    Article  CAS  Google Scholar 

  38. Herbinger, K., Tausz, M., Wonisch, A., Soja, G., Sorger, A., & Grill, D. (2002). Complex interactive effects of drought and ozone stress on the antioxidant defense systems of two wheat cultivars. Plant Physiology and Biochemistry, 40, 691–696.

    Article  CAS  Google Scholar 

  39. Jaafar, H. Z. E., Ibrahim, M. H., & Karimi, E. (2012). Phenolics and flavonoids compounds, phenylanine ammonia lyase and antioxidant activity responses to elevated CO2 in Labisia pumila (Myrisinaceae). Molecules, 17, 6331–6347.

    Article  CAS  Google Scholar 

  40. Cvikrová, M., Gemperlová, L., Martincová, O., & Vaňková, R. (2013). Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Physiologie Biochemical, 73, 7–15.

    Article  Google Scholar 

  41. Hernandez, I., Leonor, A., & Sergi, M. (2004). Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiology, 24, 1303–1311.

    Article  CAS  Google Scholar 

  42. Ghasemzadeh, A., Jaafar, H. Z., & Rahmat, A. (2010). Elevated carbon dioxide increases contents of flavonoids and phenolic compounds, and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties. Molecules, 15, 7907–7922.

    Article  CAS  Google Scholar 

  43. Janas, K. M., Cvikrova, M., Pałagiewicz, A., Szafranska, K., & Posmyk, M. M. (2002). Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature. Plant Science, 163, 369–373.

    Article  CAS  Google Scholar 

  44. Wrobel, M., Karmac, M., Amarowicz, R., Fraczek, E., & Weidner, S. (2005). Metabolism of phenolic compounds in Vitis riparia seeds during stratification and during germination under optimal and low temperature stress conditions. Acta Physiologiae Plantarum, 27(3A), 313–320.

    Article  CAS  Google Scholar 

  45. Krol, A., Amarowicz, R., & Weidner, S. (2014). Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiology Plant, 36, 1491–1499.

    Article  CAS  Google Scholar 

  46. Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology, 5(3), 218–223.

    Article  CAS  Google Scholar 

  47. Ibrahim, M. H., & Jaafar, H. Z. E. (2011). Photosynthetic capacity, photochemical efficiency and chlorophyll content of three varieties of Labisia pumila Benth exposed to open field and greenhouse growing conditions. Acta Physiology Plantarum, 33, 2179–2185.

    Article  CAS  Google Scholar 

  48. Herrmann, K. M., & Weaver, L. M. (1999). The shikimate pathway. Annual Review Plant Physiology Plant Molecular Biology, 50, 473–503.

    Article  CAS  Google Scholar 

  49. Penuelas, J., & Estiarte, M. (1998). Can elevated CO2 affect secondary metabolism and ecosystem function? Trees, 13, 20–24.

    CAS  Google Scholar 

  50. Zainol, M. K., Abd-Hamid, A., Yusof, S., & Muse, R. (2003). Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chemistry, 81, 575–581.

    Article  CAS  Google Scholar 

  51. Dykes, L., & Rooney, L. W. (2007). Phenolic compounds in cereal grains and their health benefits. CerealFood World, 52, 105–111.

    CAS  Google Scholar 

  52. Kumar, V., Rani, A., Dixit, A., Bhatnagar, D., & Chauhan, G. S. (2009). Relative changes in tocopherols, isoflavones and antioxidative properties of soybean during different reproductive stages. Journal of Agricultural and Food Chemistry, 57, 2705–2710.

    Article  CAS  Google Scholar 

  53. Ali, Q., Ashraf, M., & Anwar, F. (2010). Seed composition and seed oil antioxidant activity of maize under water stress. Journal of American Oil Chemistry Society, 87, 1179–1187.

    Article  CAS  Google Scholar 

  54. Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoids antioxidants: chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry, 13, 572–584.

    Article  CAS  Google Scholar 

  55. Weidner, S., Amarowicz, R., Karamac, M., & Fraczek, E. (2000). Changes in endogenous phenolic acids during development of Secale cereale caryopses and after treatment of unripe rye grains. Plant Physiology and Biochemistry, 38, 595–602.

    Article  CAS  Google Scholar 

  56. Bettaieb, I., Sellami, I. H., Bourgou, S., Limam, F., & Marzouk, B. (2011). Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiologiae Plantarum, 33, 1103–1111.

    Article  CAS  Google Scholar 

  57. Fischer, S., Wilckens, R., Jara, J., & Aranda, M. (2013). Controlled water stress to improve functional and nutritional quality in quinoa seed. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas, 12(5), 457–468.

    Google Scholar 

  58. Falk, J., & Munné-Bosch, S. (2010). Tocochromanol functions in plants: antioxidation and beyond. Journal of Experimental Botany, 61, 1549–1566.

    Article  CAS  Google Scholar 

  59. Slesak, I., Libik, M., Karpinska, B., Karpinski, S., & Miszalski, Z. (2007). The role of hydrogen peroxide in regulation of plant metabolism and cellular signaling in response to environmental stresses. Acta Biochimica Polonica, 54, 39–50.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Isfahan University of Technology for funding the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badraldin Ebrahim Sayed Tabatabaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharibi, S., Tabatabaei, B.E.S., Saeidi, G. et al. Effect of Drought Stress on Total Phenolic, Lipid Peroxidation, and Antioxidant Activity of Achillea Species. Appl Biochem Biotechnol 178, 796–809 (2016). https://doi.org/10.1007/s12010-015-1909-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1909-3

Keywords

Navigation