Abstract
Phycocyanin is a photosynthetic pigment found in photosynthetic cyanobacteria, cryptophytes, and red algae. In general, production of phycocyanin depends mainly on the light conditions during the cultivation period, and purification of phycocyanin requires expensive and complex procedures. In this study, we propose a new two-stage cultivation method to maximize the quantitative content and purity of phycocyanin obtained from Spirulina platensis using red and blue light-emitting diodes (LEDs) under different light intensities. In the first stage, Spirulina was cultured under a combination of red and blue LEDs to obtain the fast growth rate until reaching an absorbance of 1.4–1.6 at 680 nm. Next, blue LEDs were used to enhance the concentration and purity of the phycocyanin in Spirulina. Two weeks of the two-stage cultivation of Spirulina yielded 1.28 mg mL−1 phycocyanin with the purity of 2.7 (OD620/OD280).
Similar content being viewed by others
References
Eriksen, N. T. (2008). Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1–14. doi:10.1007/s00253-008-1542-y.
Yamanaka, G., Glazer, A. N., & Williams, R. C. (1978). Cyanobacterial phycobilisomes. Characterization of the phycobilisomes of Synechococcus sp. 6301. The Journal of Biological Chemistry, 253(22), 8303–8310.
Sun, L., Wang, S., & Qiao, Z. (2006). Chemical stabilization of the phycocyanin from cyanobacterium Spirulina platensis. Journal of Biotechnology, 121, 563–569. doi:10.1016/j.jbiotec.2005.08.017.
Sarada, D. V. L., Sreenath Kumar, C., & Rengasamy, R. (2011). Purified C-phycocyanin from Spirulina platensis (Nordstedt) Geitler: a novel and potent agent against drug resistant bacteria. World Journal of Microbiology and Biotechnology, 27(4), 779–783. doi:10.1007/s11274-010-0516-2.
Lu, C., & Vonshak, A. (2002). Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia Plantarum, 114(3), 405–413.
Singh, A. K., Bhattacharyya-Pakrasi, M., Elvitigala, T., Ghosh, B., Aurora, R., & Pakrasi, H. B. (2009). A systems-level analysis of the effects of light quality on the metabolism of a cyanobacterium. Plant Physiology, 151(3), 1596–1608. doi:10.1104/pp. 109.144824.
Chaiklahan, R., Chirasuwan, N., Loha, V., Tia, S., & Bunnag, B. (2011). Separation and purification of phycocyanin from Spirulina sp. using a membrane process. Bioresource Technology, 102(14), 7159–7164. doi:10.1016/j.biortech.2011.04.067.
Vadiveloo, A., Moheimani, N. R., Cosgrove, J. J., Bahri, P. A., & Parlevliet, D. (2015). Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp. (Eustigmatophyceae). Algal Research, 8, 121–127. doi:10.1016/j.algal.2015.02.001.
Patil, G., Chethana, S., Sridevi, A. S., & Raghavarao, K. S. (2006). Method to obtain C-phycocyanin of high purity. Journal of Chromatography. A, 1127(1-2), 76–81. doi:10.1016/j.chroma.2006.05.073.
Patil, G., & Raghavarao, K. S. (2007). Aqueous two phase extraction for purification of C-phycocyanin. Biochemical Engineering Journal, 34(2), 156–164. doi:10.1016/j.bej.2006.11.026.
Herrera, A., Boussiba, S., Napoleone, V., & Hohlberg, A. (1989). Recovery of C-phycocyanin from the cyanobacterium Spirulina maxima. Journal of Applied Phycology, 1, 325–331.
Zhang, Y., & Chen, F. (1999). A simple method for efficient separation and purification of C-phycocyanin and allophycocyanin from Spirulina platensis, 601–603
Minkova, K. M., Tchernov, A. A., Tchorbadjieva, M. I., Fournadjieva, S. T., Antova, R. E., & Busheva, M. C. (2003). Purification of C-phycocyanin from Spirulina (Arthrospira) fusiformis. Journal of Biotechnology, 102(1), 55–59. doi:10.1016/S0168-1656(03)00004-X.
Soni, B., Trivedi, U., & Madamwar, D. (2008). A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresource Technology, 99(1), 188–194. doi:10.1016/j.biortech.2006.11.010.
Wang, C. Y., Fu, C. C., & Liu, Y. C. (2007). Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 37(1), 21–25. doi:10.1016/j.bej.2007.03.004.
Demarsac, N. T., & Houmard, J. (1993). Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiology Reviews, 104(1-2), 119–189. doi:10.1016/0378-1097(93)90506-W.
Garnier, F., Dubacq, J. P., & Thomas, J. C. (1994). Evidence for a transient association of new proteins with the Spirulina maxima phycobilisome in relation to light intensity. Plant Physiology, 106(2), 747–754.
Babu, T. S., Kumar, A., & Varma, A. K. (1991). Effect of light quality on phycobilisome components of the cyanobacterium Spirulina platensis. Plant Physiology, 95(2), 492–497.
Ogawa, T., Kozasa, H., & Terui, G. (1971). Studies on the growth of Spirulina platensis. I. On the pure culture of Spirulina platensis. Journal of Fermentation Technology, 50(3), 143–149.
Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2), 419–435. doi:10.1083/jcb.58.2.419.
Ravelonandro, P. (2008). Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. Journal of Chemical …, 848(September 2007), 842–848. doi:10.1002/jctb
Chainapong, T., Traichaiyaporn, S., & R. L, D. (2012). Effect of light quality on biomass and pigment production in photoautotrophic and mixotrophic cultures of Spirulina platensis. Journal of Agricultural Technology, 8(5), 1593–1604.
Takano, H., Arai, T., Hirano, M., & Matsunaga, T. (1995). Effect of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG 042902. Applied Microbiology and Biotechnology, 43(6), 1014–1018. doi:10.1007/BF00166918.
Chen, H.-B., Wu, J.-Y., Wang, C.-F., Fu, C.-C., Shieh, C.-J., Chen, C.-I., & Liu, Y.-C. (2010). Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochemical Engineering Journal, 53(1), 52–56. doi:10.1016/j.bej.2010.09.004.
Hihara, Y., Kamei, A., Kanehisa, M., Kaplan, A., & Ikeuchi, M. (2001). DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. The Plant Cell, 13(4), 793–806.
Madhyastha, H. K., & Vatsala, T. M. (2007). Pigment production in Spirulina fussiformis in different photophysical conditions. Biomolecular Engineering, 24(3), 301–305. doi:10.1016/j.bioeng.2007.04.001.
Markou, G. (2014). Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semi-continuous mode. Applied Biochemistry and Biotechnology, 1–11. doi:10.1007/s12010-014-0727-3
Akimoto, S., Yokono, M., Hamada, F., Teshigahara, A., Aikawa, S., & Kondo, A. (2012). Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochimica et Biophysica Acta - Bioenergetics, 1817(8), 1483–1489. doi:10.1016/j.bbabio.2012.01.006.
Abd El-Baky, H. H., & El-Baroty, G. G. S. (2012). Characterization and bioactivity of phycocyanin isolated from Spirulina maxima grown under salt stress. Food & Function, 3(4), 381–388. doi:10.1039/c2fo10194g.
Cisneros, M., & Rito-Palomares, M. (2004). A simplified strategy for the release and primary recovery of C-phycocyanin produced by Spirulina maxima. Chemical and Biochemical Engineering Quarterly, 18(4), 385–390. Retrieved from http://www.cabeq.pbf.hr/pdf/18_4_2004/CABEQ_2004_04_8.pdf .
Liao, X., Zhang, B., Wang, X., Yan, H., & Zhang, X. (2011). Purification of C-phycocyanin from Spirulina platensis by single-step ion-exchange chromatography. Chromatographia, 73(3-4), 291–296. doi:10.1007/s10337-010-1874-5.
Acknowledgments
This research was supported by the National Nuclear R&D Program (2012M2A8A4055325) through the National Research Foundation of Korea, funded by the Ministry of Science ICT and Future Planning.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Lee, SH., Lee, J.E., Kim, Y. et al. The Production of High Purity Phycocyanin by Spirulina platensis Using Light-Emitting Diodes Based Two-Stage Cultivation. Appl Biochem Biotechnol 178, 382–395 (2016). https://doi.org/10.1007/s12010-015-1879-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-015-1879-5