Advertisement

Applied Biochemistry and Biotechnology

, Volume 178, Issue 2, pp 382–395 | Cite as

The Production of High Purity Phycocyanin by Spirulina platensis Using Light-Emitting Diodes Based Two-Stage Cultivation

  • Sang-Hyo Lee
  • Ju Eun Lee
  • Yoori Kim
  • Seung-Yop LeeEmail author
Article

Abstract

Phycocyanin is a photosynthetic pigment found in photosynthetic cyanobacteria, cryptophytes, and red algae. In general, production of phycocyanin depends mainly on the light conditions during the cultivation period, and purification of phycocyanin requires expensive and complex procedures. In this study, we propose a new two-stage cultivation method to maximize the quantitative content and purity of phycocyanin obtained from Spirulina platensis using red and blue light-emitting diodes (LEDs) under different light intensities. In the first stage, Spirulina was cultured under a combination of red and blue LEDs to obtain the fast growth rate until reaching an absorbance of 1.4–1.6 at 680 nm. Next, blue LEDs were used to enhance the concentration and purity of the phycocyanin in Spirulina. Two weeks of the two-stage cultivation of Spirulina yielded 1.28 mg mL−1 phycocyanin with the purity of 2.7 (OD620/OD280).

Keywords

Spirulina platensis Phycocyanin Cultivation Light-emitting diode (LED) Wavelength Light intensity 

Notes

Acknowledgments

This research was supported by the National Nuclear R&D Program (2012M2A8A4055325) through the National Research Foundation of Korea, funded by the Ministry of Science ICT and Future Planning.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Eriksen, N. T. (2008). Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1–14. doi: 10.1007/s00253-008-1542-y.CrossRefGoogle Scholar
  2. 2.
    Yamanaka, G., Glazer, A. N., & Williams, R. C. (1978). Cyanobacterial phycobilisomes. Characterization of the phycobilisomes of Synechococcus sp. 6301. The Journal of Biological Chemistry, 253(22), 8303–8310.Google Scholar
  3. 3.
    Sun, L., Wang, S., & Qiao, Z. (2006). Chemical stabilization of the phycocyanin from cyanobacterium Spirulina platensis. Journal of Biotechnology, 121, 563–569. doi: 10.1016/j.jbiotec.2005.08.017.CrossRefGoogle Scholar
  4. 4.
    Sarada, D. V. L., Sreenath Kumar, C., & Rengasamy, R. (2011). Purified C-phycocyanin from Spirulina platensis (Nordstedt) Geitler: a novel and potent agent against drug resistant bacteria. World Journal of Microbiology and Biotechnology, 27(4), 779–783. doi: 10.1007/s11274-010-0516-2.CrossRefGoogle Scholar
  5. 5.
    Lu, C., & Vonshak, A. (2002). Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia Plantarum, 114(3), 405–413.CrossRefGoogle Scholar
  6. 6.
    Singh, A. K., Bhattacharyya-Pakrasi, M., Elvitigala, T., Ghosh, B., Aurora, R., & Pakrasi, H. B. (2009). A systems-level analysis of the effects of light quality on the metabolism of a cyanobacterium. Plant Physiology, 151(3), 1596–1608. doi: 10.1104/pp. 109.144824.CrossRefGoogle Scholar
  7. 7.
    Chaiklahan, R., Chirasuwan, N., Loha, V., Tia, S., & Bunnag, B. (2011). Separation and purification of phycocyanin from Spirulina sp. using a membrane process. Bioresource Technology, 102(14), 7159–7164. doi: 10.1016/j.biortech.2011.04.067.CrossRefGoogle Scholar
  8. 8.
    Vadiveloo, A., Moheimani, N. R., Cosgrove, J. J., Bahri, P. A., & Parlevliet, D. (2015). Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp. (Eustigmatophyceae). Algal Research, 8, 121–127. doi: 10.1016/j.algal.2015.02.001.CrossRefGoogle Scholar
  9. 9.
    Patil, G., Chethana, S., Sridevi, A. S., & Raghavarao, K. S. (2006). Method to obtain C-phycocyanin of high purity. Journal of Chromatography. A, 1127(1-2), 76–81. doi: 10.1016/j.chroma.2006.05.073.CrossRefGoogle Scholar
  10. 10.
    Patil, G., & Raghavarao, K. S. (2007). Aqueous two phase extraction for purification of C-phycocyanin. Biochemical Engineering Journal, 34(2), 156–164. doi: 10.1016/j.bej.2006.11.026.CrossRefGoogle Scholar
  11. 11.
    Herrera, A., Boussiba, S., Napoleone, V., & Hohlberg, A. (1989). Recovery of C-phycocyanin from the cyanobacterium Spirulina maxima. Journal of Applied Phycology, 1, 325–331.CrossRefGoogle Scholar
  12. 12.
    Zhang, Y., & Chen, F. (1999). A simple method for efficient separation and purification of C-phycocyanin and allophycocyanin from Spirulina platensis, 601–603Google Scholar
  13. 13.
    Minkova, K. M., Tchernov, A. A., Tchorbadjieva, M. I., Fournadjieva, S. T., Antova, R. E., & Busheva, M. C. (2003). Purification of C-phycocyanin from Spirulina (Arthrospira) fusiformis. Journal of Biotechnology, 102(1), 55–59. doi: 10.1016/S0168-1656(03)00004-X.CrossRefGoogle Scholar
  14. 14.
    Soni, B., Trivedi, U., & Madamwar, D. (2008). A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresource Technology, 99(1), 188–194. doi: 10.1016/j.biortech.2006.11.010.CrossRefGoogle Scholar
  15. 15.
    Wang, C. Y., Fu, C. C., & Liu, Y. C. (2007). Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 37(1), 21–25. doi: 10.1016/j.bej.2007.03.004.CrossRefGoogle Scholar
  16. 16.
    Demarsac, N. T., & Houmard, J. (1993). Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiology Reviews, 104(1-2), 119–189. doi: 10.1016/0378-1097(93)90506-W.CrossRefGoogle Scholar
  17. 17.
    Garnier, F., Dubacq, J. P., & Thomas, J. C. (1994). Evidence for a transient association of new proteins with the Spirulina maxima phycobilisome in relation to light intensity. Plant Physiology, 106(2), 747–754.Google Scholar
  18. 18.
    Babu, T. S., Kumar, A., & Varma, A. K. (1991). Effect of light quality on phycobilisome components of the cyanobacterium Spirulina platensis. Plant Physiology, 95(2), 492–497.CrossRefGoogle Scholar
  19. 19.
    Ogawa, T., Kozasa, H., & Terui, G. (1971). Studies on the growth of Spirulina platensis. I. On the pure culture of Spirulina platensis. Journal of Fermentation Technology, 50(3), 143–149.Google Scholar
  20. 20.
    Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2), 419–435. doi: 10.1083/jcb.58.2.419.CrossRefGoogle Scholar
  21. 21.
    Ravelonandro, P. (2008). Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. Journal of Chemical …, 848(September 2007), 842–848. doi:10.1002/jctbGoogle Scholar
  22. 22.
    Chainapong, T., Traichaiyaporn, S., & R. L, D. (2012). Effect of light quality on biomass and pigment production in photoautotrophic and mixotrophic cultures of Spirulina platensis. Journal of Agricultural Technology, 8(5), 1593–1604.Google Scholar
  23. 23.
    Takano, H., Arai, T., Hirano, M., & Matsunaga, T. (1995). Effect of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG 042902. Applied Microbiology and Biotechnology, 43(6), 1014–1018. doi: 10.1007/BF00166918.CrossRefGoogle Scholar
  24. 24.
    Chen, H.-B., Wu, J.-Y., Wang, C.-F., Fu, C.-C., Shieh, C.-J., Chen, C.-I., & Liu, Y.-C. (2010). Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochemical Engineering Journal, 53(1), 52–56. doi: 10.1016/j.bej.2010.09.004.CrossRefGoogle Scholar
  25. 25.
    Hihara, Y., Kamei, A., Kanehisa, M., Kaplan, A., & Ikeuchi, M. (2001). DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. The Plant Cell, 13(4), 793–806.CrossRefGoogle Scholar
  26. 26.
    Madhyastha, H. K., & Vatsala, T. M. (2007). Pigment production in Spirulina fussiformis in different photophysical conditions. Biomolecular Engineering, 24(3), 301–305. doi: 10.1016/j.bioeng.2007.04.001.CrossRefGoogle Scholar
  27. 27.
    Markou, G. (2014). Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semi-continuous mode. Applied Biochemistry and Biotechnology, 1–11. doi: 10.1007/s12010-014-0727-3
  28. 28.
    Akimoto, S., Yokono, M., Hamada, F., Teshigahara, A., Aikawa, S., & Kondo, A. (2012). Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochimica et Biophysica Acta - Bioenergetics, 1817(8), 1483–1489. doi: 10.1016/j.bbabio.2012.01.006.CrossRefGoogle Scholar
  29. 29.
    Abd El-Baky, H. H., & El-Baroty, G. G. S. (2012). Characterization and bioactivity of phycocyanin isolated from Spirulina maxima grown under salt stress. Food & Function, 3(4), 381–388. doi: 10.1039/c2fo10194g.CrossRefGoogle Scholar
  30. 30.
    Cisneros, M., & Rito-Palomares, M. (2004). A simplified strategy for the release and primary recovery of C-phycocyanin produced by Spirulina maxima. Chemical and Biochemical Engineering Quarterly, 18(4), 385–390. Retrieved from http://www.cabeq.pbf.hr/pdf/18_4_2004/CABEQ_2004_04_8.pdf.Google Scholar
  31. 31.
    Liao, X., Zhang, B., Wang, X., Yan, H., & Zhang, X. (2011). Purification of C-phycocyanin from Spirulina platensis by single-step ion-exchange chromatography. Chromatographia, 73(3-4), 291–296. doi: 10.1007/s10337-010-1874-5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sang-Hyo Lee
    • 1
  • Ju Eun Lee
    • 2
  • Yoori Kim
    • 1
  • Seung-Yop Lee
    • 1
    • 2
    Email author
  1. 1.Department of Interdisciplinary Program of Integrated BiotechnologySogang UniversitySeoulRepublic of Korea
  2. 2.Department of Mechanical EngineeringSogang UniversitySeoulRepublic of Korea

Personalised recommendations