Applied Biochemistry and Biotechnology

, Volume 178, Issue 1, pp 76–90 | Cite as

Isolation and Characterization of Bacteria That Use Furans as the Sole Carbon Source

  • Sarah A. Lee
  • Lindsey J. Wrona
  • A. Bruce Cahoon
  • Jacob Crigler
  • Mark A. EitemanEmail author
  • Elliot Altman


Five bacterial strains were isolated from wastewater treatment facilities which were able to use furfural as the sole carbon source. Based on 16S rRNA phylogenetic analysis, these strains were identified as Cupriavidus pinatubonensis (designated ALS1280), Pigmentiphaga sp. (ALS1172), Pseudomonas sp. BWDY (ALS1279), Pseudomonas mendocina (ALS1131), and Pseudomonas putida (ALS1267). In all cases, growth under oxygenated conditions on furfural was accompanied by the transient accumulation of 2-furoic acid (furoate) with no furfuryl alcohol observed. ALS1267 and ALS1279 were also able to metabolize 5-(hydroxymethyl)furfural. The five isolates and their phylogenetic near neighbors were compared for furfural dehydrogenase activity and tolerance to furfural and furoate in defined and complex media. P. putida ALS1267 was the most tolerant to furans and tolerated 17 mM furfural or 195 mM furoate before its growth rate was reduced by 50 % in a defined medium. This strain also had the greatest specific growth rate on furfural (0.6/h at 27–30 °C) and showed the highest specific activity of furfural dehydrogenase (170 mIU/mg) of any furfural-utilizing strain that has been characterized to date.


Lignocellulose Furfural Hydroxymethylfurfural Pseudomonas Furoic acid 



The authors acknowledge financial support from the Southeastern Sun Grant Center under Prime Award No. DTOS59-07-G-00050.

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12010_2015_1859_MOESM1_ESM.pdf (72 kb)
Supplementary Table S1 (PDF 71.9 kb)


  1. 1.
    Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66, 10–26.CrossRefGoogle Scholar
  2. 2.
    Lawford, H. G., & Rousseau, J. D. (1993). Effects of acetic acid on glucose and xylose metabolism by a genetically engineered ethanologenic Escherichia coli. Applied Biochemistry and Biotechnology, 39, 301–322.CrossRefGoogle Scholar
  3. 3.
    Narendranath, N. V., Thomas, K. C., & Ingledew, W. M. (2001). Acetic acid and lactic acid inhibition of growth of Saccharomyces cerevisiae by different mechanisms. Journal of the American Society of Brewing Chemists, 59, 187–194.Google Scholar
  4. 4.
    Thomas, K. C., Hynes, S. H., & Ingledew, W. M. (2002). Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Applied and Environmental Microbiology, 68, 1616–1623.CrossRefGoogle Scholar
  5. 5.
    Heer, D., & Sauer, U. (2008). Identification of furfural as a key toxin in lignocellulosic hydrolysate and evolution of a tolerant yeast strain. Microbial Biotechnology, 1, 497–506.CrossRefGoogle Scholar
  6. 6.
    Tran, A. V., & Chambers, R. P. (1985). Red oak wood derived inhibitors in the ethanol fermentation of xylose by Pichia stipitis CBS 5776. Biotechnology Letters, 7, 841–846.CrossRefGoogle Scholar
  7. 7.
    Tran, A. V., & Chambers, R. P. (1986). Lignin and extractives derived inhibitors in the 2,3-butanediol fermentation of mannose-rich prehydrolysates. Applied Microbiology and Biotechnology, 23, 191–197.CrossRefGoogle Scholar
  8. 8.
    Martín, C., & Jönsson, L. J. (2003). Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme and Microbial Technology, 32, 386–395.CrossRefGoogle Scholar
  9. 9.
    Taherzadeh, M. J., Eklund, R., Gustafsson, L., Niklasson, C., & Lidén, G. (1997). Characterization and fermentation of dilute-acid hydrolyzates from wood. Industrial and Engineering Chemistry Research, 36, 4659–4665.CrossRefGoogle Scholar
  10. 10.
    van der Pol, E. C., Bakker, R. R., Baets, P., & Eggink, G. (2014). By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio) chemicals and fuels. Applied Microbiology and Biotechnology, 98, 9579–9593.CrossRefGoogle Scholar
  11. 11.
    Zalvidar, J., Martinez, A., & Ingram, L. O. (1999). Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnology and Bioengineering, 65, 24–33.CrossRefGoogle Scholar
  12. 12.
    Klinke, H. B., Ahring, B. K., Schmidt, A. S., & Thomsen, A. B. (2002). Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology, 82, 15–26.CrossRefGoogle Scholar
  13. 13.
    Mussatto, S. I., & Roberto, I. C. (2004). Alternatives for detoxification of diluted-acid lignocelllosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology, 93, 1–10.CrossRefGoogle Scholar
  14. 14.
    Wang, X., Miller, E. N., Yomano, L. P., Zhang, S., Shanmugam, K. T., & Ingram, L. O. (2011). Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Applied and Environmental Microbiology, 77, 5132–5174.CrossRefGoogle Scholar
  15. 15.
    Wang, X., Miller, E. N., Yomano, L. P., Shanmugam, K. T., & Ingram, L. O. (2012). Increased furan tolerance in Escherichia coli due to a cryptic upcA gene. Applied and Environmental Microbiology, 78, 2452–2455.CrossRefGoogle Scholar
  16. 16.
    Liu, Z. L., Slininger, P. J., & Gorsich, S. W. (2005). Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Applied Biochemistry and Biotechnology, 121, 451–460.CrossRefGoogle Scholar
  17. 17.
    Martín, C., Marcet, M., Almazín, O., & Jönsson, L. J. (2007). Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresource Technology, 98, 1767–1773.CrossRefGoogle Scholar
  18. 18.
    Trudgill, P. W. (1969). The metabolism of 2-furoic acid by Pseudomonas F2. The Biochemical Journal, 113, 577–587.CrossRefGoogle Scholar
  19. 19.
    Koenig, K., & Andreesen, J. R. (1989). Molybdenum involvement in aerobic degradation of 2-furoic acid by Pseudomonas putida Fu1. Applied and Environmental Microbiology, 55, 1829–1834.Google Scholar
  20. 20.
    Koopman, F., Wierckx, N., de Winde, J. H., & Ruijssenaars, H. J. (2010). Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proceedings of the National Academy of Sciences of the United States of America, 107, 4919–4924.CrossRefGoogle Scholar
  21. 21.
    Brune, G., Schoberth, S. M., & Sahm, H. (1983). Growth of a strictly anaerobic bacterium on furfural (2-furaldehyde). Applied and Environmental Microbiology, 46, 1187–1192.Google Scholar
  22. 22.
    Lopez, M. J., Nichols, N. N., Dien, B. S., Moreno, J., & Bothast, R. J. (2004). Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Applied Microbiology and Biotechnology, 64, 125–131.CrossRefGoogle Scholar
  23. 23.
    Nichols, N. N., Dien, B. S., Guisado, G. M., & López, M. J. (2005). Bioabatement to remove inhibitors form biomass-derived sugar hydrolysates. Applied Biochemistry and Biotechnology, 121-124, 379–390.CrossRefGoogle Scholar
  24. 24.
    Freier, D., Mothershed, C. P., & Wiegel, J. (1988). Characterization of Clostridium thermocellum JW20. Applied and Environmental Microbiology, 54, 204–211.Google Scholar
  25. 25.
    Schmidt, E. L., Bankole, R. O., & Bohlool, B. B. (1968). Fluorescent-antibody approach to study of rhizobia in soil. Journal of Bacteriology, 95, 1987–1992.Google Scholar
  26. 26.
    Sessitsch, A., Coenye, T., Sturz, A. V., Vandamme, P., Ait Barka, E., Salles, J. F., Van Elsas, J. D., Faure, D., Reiter, B., Glick, B. R., Wang-Pruski, G., & Nowak, J. (2005). Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. International Journal of Systematic and Evolutionary Microbiology, 55, 1187–1192.CrossRefGoogle Scholar
  27. 27.
    Kim, Y. J., Kim, M. K., Im, W. T., Srinivasan, S., & Yang, D. C. (2010). Parapusillimonas granuli gen. nov. sp. nov., isolated from granules from a wastewater-treatment bioreactor. International Journal of Systematic and Evolutionary Microbiology, 60, 1401–1406.CrossRefGoogle Scholar
  28. 28.
    Wittich, R. M., Rast, H. G., & Knackmuss, H. J. (1988). Degradation of naphthalene-2,6- and napthalene-1,6-disulfonic acid by a Moraxella sp. Applied and Environmental Microbiology, 54, 1842–1847.Google Scholar
  29. 29.
    Palleroni, N. J., Doudoroff, M., Stanier, R. Y., Solánes, R. E., & Mandel, M. (1970). Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri group. Journal of General Microbiology, 60, 215–231.CrossRefGoogle Scholar
  30. 30.
    Kohler, H. P., Kohler-Staub, D., & Focht, D. D. (1988). Degradation of 2-hydroxybiphenyl and 2,2′-dihydroxybiphenyl by Pseudomonas sp. strain HBP1. Applied and Environmental Microbiology, 54, 2683–2688.Google Scholar
  31. 31.
    Nakazawa, T. (2002). Travels of a Pseudomonas, from Japan around the world. Environmental Microbiology, 4, 782–786.CrossRefGoogle Scholar
  32. 32.
    Kageyama, C., Ohta, T., Hiraoka, K., Suzuki, M., Okamoto, T., & Ohishi, K. (2005). Chlorinated aliphatic hydrocarbon-induced degradation of trichloroethylene in Wautersia numazuensis sp. nov. Archives of Microbiology, 183, 56–65.CrossRefGoogle Scholar
  33. 33.
    Lin, E. C. C., Lerner, S. A., & Jorgensen, S. E. (1962). A method for isolating constitutive mutants for carbohydrate-catabolizing enzymes. Biochimica et Biophysica Acta, 60, 422–424.CrossRefGoogle Scholar
  34. 34.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.CrossRefGoogle Scholar
  35. 35.
    Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., & Gibson, T. J. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.CrossRefGoogle Scholar
  36. 36.
    Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.CrossRefGoogle Scholar
  37. 37.
    Eiteman, M. A., & Chastain, M. J. (1997). Optimization of the ion-exchange analysis of organic acids from fermentation. Analytica Chimica Acta, 338, 69–75.CrossRefGoogle Scholar
  38. 38.
    Stanier, R. Y., Palleroni, N. J., & Doudoroff, M. (1966). The aerobic pseudomonads: a taxonomic study. Journal of General Microbiology, 43, 159–271.CrossRefGoogle Scholar
  39. 39.
    Hardman, D. J., Gowland, P. C., & Slater, J. H. (1986). Large plasmids from soil bacteria enriched on halogenated alkanoic acids. Applied and Environmental Microbiology, 51, 44–51.Google Scholar
  40. 40.
    Williams, P. A., & Worsey, M. J. (1976). Ubiquity of plasmids coding for toluene and xylene metabolism in soil bacteria: evidence for the existence of new TOL plasmids. Journal of Bacteriology, 125, 818–828.Google Scholar
  41. 41.
    Heringa SD, Monroe JD, Herrick JB (2007) A simple, rapid method for extracting large plasmid DNA from bacteria. Available from Nature Precedings at Google Scholar
  42. 42.
    Lakshmanaswamy, A., Rajaraman, E., Eiteman, M. A., & Altman, E. (2011). Microbial removal of acetate selectively from sugar mixtures. Journal of Industrial Microbiology & Biotechnology, 38, 1477–1484.CrossRefGoogle Scholar
  43. 43.
    Wierckx, N., Koopman, F., Bandounas, L., de Winde, J. H., & Ruijssenaars, H. J. (2009). Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysate. Microbial Biotechnology, 3, 336–343.CrossRefGoogle Scholar
  44. 44.
    Nichols, N. N., & Mertens, J. A. (2008). Identification and transcriptional profiling of Pseudomonas putida genes involved in furoic acid metabolism. FEMS Microbiology Letters, 284, 52–57.CrossRefGoogle Scholar
  45. 45.
    Zheng, D., Bao, J., Lu, J., & Gao, C. (2015). Isolation and characterization of a furfural-degrading bacterium Bacillus cereus sp. strain DS1. Current Microbiology, 70, 199–205.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sarah A. Lee
    • 1
  • Lindsey J. Wrona
    • 1
  • A. Bruce Cahoon
    • 2
  • Jacob Crigler
    • 3
  • Mark A. Eiteman
    • 1
    Email author
  • Elliot Altman
    • 3
  1. 1.Biochemical Engineering, College of EngineeringUniversity of GeorgiaAthensUSA
  2. 2.Department of Natural SciencesThe University of Virginia’s College at WiseWiseUSA
  3. 3.Department of BiologyMiddle Tennessee State UniversityMurfreesboroUSA

Personalised recommendations