Skip to main content
Log in

Methane Production from Rice Straw Hydrolysate Treated with Dilute Acid by Anaerobic Granular Sludge

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The traditional anaerobic digestion process of straw to biogas faces bottlenecks of long anaerobic digestion time, low digestion rate, less gas production, etc., while straw hydrolysate has the potential to overcome these drawbacks. In this study, the dilute sulphuric acid–treated hydrolysate of rice straw (DSARSH) containing high sulfate was firstly proved to be a feasible substrate for methane production under mesophilic digestion by granular sludge within a short digestion time. Batch anaerobic digestion process was operated under different initial chemical oxygen demand (COD) values at temperature of 37 °C with the pH of 8.5. Among the initial COD values ranging from 3000 to 11,000 mg/L, 5000 mg/L was proved to be the most appropriate considering high COD removal efficiency (94.17 ± 1.67 %), CH4 content (65.52 ± 3.12 %), and CH4 yield (0.346 ± 0.008 LCH4/g COD removed) within 120 h. Furthermore, when the studied system operated at the initial COD of 5000 mg/L, the sulfate removal ratio could reach 56.28 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cheng, J. R., & Zhu, M. J. (2012). A novel co-culture strategy for lignocellulosic bioenergy production: a systematic review. International Journal of Modelling, Biochemical Medicine, 1(3), 166–193.

    CAS  Google Scholar 

  2. Markovska, N., Klemes, J. J., Duic, N., Guzovic, Z., Mathiesen, B. V., Lund, H., & Yan, J. Y. (2014). Sustainable development of energy, water and environment systems. Applied Energy, 135, 597–599.

    Article  Google Scholar 

  3. Yamasaki, Y., Kanno, M., Suzuki, Y., & Kaneko, S. (2013). Development of an engine control system using city gas and biogas fuel mixture. Applied Energy, 101, 465–474.

    Article  CAS  Google Scholar 

  4. Zhu, J., Wan, C., & Li, Y. (2010). Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresource Technology, 101(19), 7523–7528.

    Article  CAS  Google Scholar 

  5. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10), 4044–4064.

    Article  CAS  Google Scholar 

  6. Lei, Z., Chen, J., Zhang, Z., & Sugiura, N. (2010). Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation. Bioresource Technology, 101(12), 4343–4348.

    Article  CAS  Google Scholar 

  7. Song, Z., Yang, G., Liu, X., Yan, Z., Yuan, Y., & Liao, Y. (2014). Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion. Plos One, 9(4), 1016–1017.

    Google Scholar 

  8. Lu, Y., Lai, Q., Zhang, C., Zhao, H., Ma, K., Zhao, X., Chen, H. Z., Liu, D. H., & Xing, X. H. (2009). Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process. Bioresource Technology, 100(12), 2889–2895.

    Article  CAS  Google Scholar 

  9. Lu, S. G., Imai, T., Ukita, M., & Sekine, M. (2007). Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes. Journal of Environmental Sciences, 19(4), 416–420.

    Article  CAS  Google Scholar 

  10. Kadam, K. L., Rydholm, E. C., & McMillan, J. D. (2004). Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnology Progress, 20(3), 698–705.

    Article  CAS  Google Scholar 

  11. Sun, Y., & Cheng, J. J. (2005). Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource Technology, 96(14), 1599–1606.

    Article  CAS  Google Scholar 

  12. Oude Elferink, S. J. W. H., Visser, A., Hulshoff Pol, L. W., & Stams, A. J. M. (1994). Sulfate reduction in methanogenic bioreactors. FEMS Microbiology Reviews, 15(2-3), 119–136.

    Article  CAS  Google Scholar 

  13. Huang, C., Zong, M. H., Wu, H., & Liu, Q. P. (2009). Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresource Technology, 100, 4535–4538.

    Article  CAS  Google Scholar 

  14. Moosvi, S., & Madamwar, D. (2007). An integrated process for the treatment of CETP wastewater using coagulation, anaerobic and aerobic process. Bioresource Technology, 98(17), 3384–3392.

    Article  CAS  Google Scholar 

  15. Dilallo, R., & Albertson, O. E. (1961). Volatile Acids by Direct Titration. Journal of the Water Pollution Control Federation, 33(4), 356–365.

    CAS  Google Scholar 

  16. Taita, S., Clarkeb, W. P., Kellera, J., & Batstone, D. J. (2009). Removal of sulfate from high-strength wastewater by crystallization. Water Research, 43, 762–772.

    Article  Google Scholar 

  17. Gavala, H. N., Angelidaki, I., & Ahring, B. K. (2003). Kinetics and modeling of anaerobic digestion process. Advances in Biochemical Engineering/Biotechnology, 81, 57–93.

    Article  CAS  Google Scholar 

  18. Percheron, G., Bernet, N., & Moletta, R. (1997). Start-up of anaerobic digestion of sulfate wastewater. Bioresource Technology, 61(1), 21–27.

    Article  CAS  Google Scholar 

  19. Liu, Z. L., Moon, J., Andersh, B. J., Slininger, P. J., & Weber, S. (2008). Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 81(4), 743–753.

    Article  CAS  Google Scholar 

  20. Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., & Nilvebrant, N. O. (1999). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology, 24(3–4), 151–159.

    Article  CAS  Google Scholar 

  21. Kuo, W., & Shu, T. (2004). Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells. Journal of Hazardous Materials, 113(1-3), 149–157.

    Article  Google Scholar 

  22. Isa, Z., Grusenmeyer, S., & Verstraete, W. (1986). Sulfate reduction relative to methane production in high-rate anaerobic digestion-technical aspect. Applied and Environmental Microbiology, 51(3), 572–579.

    CAS  Google Scholar 

  23. Hilton, M. G., & Archer, D. B. (1998). Anaerobic digestion of a sulphate-rich molasses wastewater: inhibition of hydrogen sulphide production. Biotechnology and Bioengineering, 31(8), 885–888.

    Article  Google Scholar 

  24. Saritpongteeraka, K., & Chaiprapat, S. (2008). Effects of pH adjustment by parawood ash and effluent recycle ratio on the performance of anaerobic baffled reactors treating high sulfate wastewater. Bioresource Technology, 99(18), 8987–8994.

    Article  CAS  Google Scholar 

  25. Prochazka, J., Dolejs, P., Maca, J., & Dohanyos, M. (2012). Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Applied Microbiology and Biotechnology, 93(1), 439–447.

    Article  Google Scholar 

  26. Zhu, H., Stadnyk, A., Beland, M., & Seto, P. (2008). Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresource Technology, 99(11), 5078–5084.

    Article  CAS  Google Scholar 

  27. Zhao, C. Q., Yang, Q. H., Chen, W. Y., Li, H., & Zhang, H. (2011). Isolation of a sulfate reducing bacterium and its application in sulfate removal from tannery wastewater. African Journal of Biotechnology, 10(56), 11966–11971.

    CAS  Google Scholar 

  28. Liang, F., Xiao, Y., & Zhao, F. (2013). Effect of pH on sulfate removal from wastewater using a bioelectrochemical system. Chemical Engineering Journal, 218, 147–153.

    Article  CAS  Google Scholar 

  29. Knobel, A. N., & Lewis, A. E. (2002). A mathematical model of a high sulphate wastewater anaerobic treatment system. Water Research, 36(1), 257–265.

    Article  CAS  Google Scholar 

  30. Pereira, M. A., Mota, M., & Alves, M. M. (2002). Operation of an anaerobic filter and an EGSB reactor for the treatment of an oleic acid-based effluent: influence of inoculum quality. Process Biochemistry, 37(9), 1025–1031.

    Article  CAS  Google Scholar 

  31. Zhong, W. Z., Zhang, Z. Z., Luo, Y. J., Sun, S. S., Qiao, W., & Xiao, M. (2011). Effect of biological pretreatments in enhancing corn straw biogas production. Bioresource Technology, 102, 11177–11182.

    Article  CAS  Google Scholar 

  32. Bauer, A., Boch, P., Friedl, A., & Amon, T. (2009). Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. Journal of Biotechnology, 142, 50–55.

    Article  CAS  Google Scholar 

  33. Wang, Z., Xu, F., & Li, Y. (2013). Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover. Bioresource Technology, 144, 281–287.

    Article  CAS  Google Scholar 

  34. Möeller, K., & Stinner, W. (2009). Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). European Journal of Agronomy, 30(1), 1–16.

    Article  Google Scholar 

  35. Wei, C., Wang, W., Deng, Z., & Wu, C. (2007). Characteristics of high-sulfate wastewater treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized bed. Journal of Environmental Sciences-China, 19(3), 264–270.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Support Plan Project of Guangdong Province Science and Technology [grant No. 2013B050800018], Plan Projects of Guangzhou Science and Technology [grant No. 2014 J2200068], and Plan Projects of Guangdong Province Science and Technology [grant No. 2014A020208046].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Rong Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, JR., Liu, XM. & Chen, ZY. Methane Production from Rice Straw Hydrolysate Treated with Dilute Acid by Anaerobic Granular Sludge. Appl Biochem Biotechnol 178, 9–20 (2016). https://doi.org/10.1007/s12010-015-1854-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1854-1

Keywords

Navigation