Zhang, K., Yu, C., & Yang, S.-T. (2015). Effects of soybean meal hydrolysate as the nitrogen source on seed culture morphology and fumaric acid production by Rhizopus oryzae. Process Biochemistry, 50, 173–179.
CAS
Article
Google Scholar
Xu, Q., Li, S., Huang, H., & Wen, J. (2012). Key technologies for the industrial production of fumaric acid by fermentation. Biotechnology Advances, 30, 1685–1696.
CAS
Article
Google Scholar
Ding, Y., Li, S., Dou, C., Yu, Y., & Huang, H. (2011). Production of fumaric acid by Rhizopus oryzae: role of carbon–nitrogen ratio. Applied Biochemistry and Biotechnology, 164, 1461–1467.
CAS
Article
Google Scholar
Roa Engel, C. A. (2010). Integration of fermentation and cooling crystallisation to produce organic acids.
Wang, G., Huang, D., Qi, H., Wen, J., Jia, X., & Chen, Y. (2013). Rational medium optimization based on comparative metabolic profiling analysis to improve fumaric acid production. Bioresource Technology, 137, 1–8.
CAS
Article
Google Scholar
Zhou, J., Ma, Q., Yi, H., Wang, L., Song, H., & Yuan, Y.-J. (2011). Metabolome profiling reveals metabolic cooperation between Bacillus megaterium and Ketogulonicigenium vulgare during induced swarm motility. Applied and Environmental Microbiology, 77, 7023–7030.
CAS
Article
Google Scholar
Xu, Q., Li, S., Fu, Y., Tai, C., & Huang, H. (2010). Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresource Technology, 101, 6262–6264.
CAS
Article
Google Scholar
Meijer, S., Panagiotou, G., Olsson, L., & Nielsen, J. (2007). Physiological characterization of xylose metabolism in Aspergillus niger under oxygen‐limited conditions. Biotechnology and Bioengineering, 98, 462–475.
CAS
Article
Google Scholar
Ding, M.-Z., Wang, X., Yang, Y., & Yuan, Y.-J. (2012). Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation. Metabolomics, 8, 232–243.
CAS
Article
Google Scholar
Liu, Y., Lv, C., Xu, Q., Li, S., Huang, H., & Ouyang, P. (2015). Enhanced acid tolerance of Rhizopus oryzae during fumaric acid production. Bioprocess and Biosystems Engineering, 38, 323–328.
CAS
Article
Google Scholar
Beales, N. (2004). Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Comprehensive Reviews in Food Science and Food Safety, 3, 1–20.
CAS
Article
Google Scholar
Zhou, J., Liu, L., & Chen, J. (2011). Improved ATP supply enhances acid tolerance of Candida glabrata during pyruvic acid production. Journal of Applied Microbiology, 110, 44–53.
CAS
Article
Google Scholar
Jamalzadeh, E., Verheijen, P. J. T., Heijnen, J. J., & van Gulik, W. M. (2012). pH-dependent uptake of fumaric acid in Saccharomyces cerevisiae under anaerobic conditions. Applied and Environmental Microbiology, 78, 705–716.
CAS
Article
Google Scholar
Jozefczuk, S., Klie, S., Catchpole, G., Szymanski, J., Cuadros‐Inostroza, A., Steinhauser, D., Selbig, J., Willmitzer, L. (2010). Metabolomic and transcriptomic stress response of Escherichia coli.
Diamant, S., Rosenthal, D., Azem, A., Eliahu, N., Ben-Zvi, A. P., & Goloubinoff, P. (2003). Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein-disaggregation under stress. Molecular Microbiology, 49, 401–410.
CAS
Article
Google Scholar
Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany. doi:10.1093/jxb/err460.
Google Scholar
Rodríguez-Vargas, S., Sánchez-García, A., Martínez-Rivas, J. M., Prieto, J. A., & Randez-Gil, F. (2007). Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Applied and Environmental Microbiology, 73, 110–116.
Article
Google Scholar
Fozo, E. M., & Quivey, R. G. (2004). Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Applied and Environmental Microbiology, 70, 929–936.
CAS
Article
Google Scholar
Li, L., Ye, Y., Pan, L., Zhu, Y., Zheng, S., & Lin, Y. (2009). The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses. Biochemical and Biophysical Research Communications, 387, 778–783.
CAS
Article
Google Scholar
Jiang, L., Cui, H., Zhu, L., Hu, Y., Xu, X., Li, S., & Huang, H. (2015). Enhanced propionic acid production from whey lactose with immobilized Propionibacterium acidipropionici and the role of trehalose synthesis in acid tolerance. Green Chemistry, 17, 250–259.
CAS
Article
Google Scholar
Shen, B., Hohmann, S., Jensen, R. G., Bohnert, & Hans, J. (1999). Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiology, 121, 45–52.
CAS
Article
Google Scholar