Skip to main content
Log in

Microbial Selenium Nanoparticles (SeNPs) and Their Application as a Sensitive Hydrogen Peroxide Biosensor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The cell-free extract, a crude enzyme (cytosolic and membrane fraction) obtained from an environmental isolate, Bacillus pumilus sp. BAB-3706 worked as excellent in reducing as well as stabilizing agent and facilitated the formation of stable colloidal selenium nanoparticles (SeNPs). Resulting nanoparticles were characterized using UV-vis spectrophotometer, TEM, EDAX, FT-IR and XRD, respectively. A working electrode was modified by coating the surface of indium tin oxide (ITO) with colloidal SeNPs. Successive additions of H2O2 (100 to 600 μM) in conventional three electrodes system, cyclic voltammeter with potential scan rate 25.0 mV/s, in 0.1 M phosphate buffer solution (PBS) yielded increase in current. A perpetual amperometric response at fixed potential (−1.0 V) and at selected time interval of 100 s showed different magnitude of current at every addition of H2O2. The linear range of detection of H2O2 was from 5 to 600 mM (R 2 = 0.9965), while the calculated limit of detection was found to be 3.00 μM. The current study suggested that microbial SeNPs can be used for fabrication of low cost, sensitive H2O2 biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Roninson, I. B. (2003). Tumor cell senescence in cancer treatment. Cancer Research, 63, 2705–2715.

    CAS  Google Scholar 

  2. Antunes, F., Cademas, E., & Brunk, U. (2001). Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture. Biochemistry Journal, 356, 549–555. doi:10.1042/bj3560549.

    Article  CAS  Google Scholar 

  3. Geiser, T., Ishigaki, M., Van Leer, C., Matthay, M. A., & Broaddus, V. C. (2004). H2O2 inhibits alveolar epithelial wound repair in vitro by induction of apoptosis. American Journal of Physiology. Lung Cellular and Molecular Physiology, 287, L448–L453.

    Article  CAS  Google Scholar 

  4. Zhang, J.-J., Liu, Y.-G., Jiang, L.-P., & Zhu, J.-J. (2008). Synthesis, characterizations of silica-coated gold nanorods and its applications in electroanalysis of hemoglobin. Electrochemistry Communications, 10(3), 355–358. doi:10.1016/j.elecom.2007.12.017.

    Article  CAS  Google Scholar 

  5. Liu, Y., Wang, D. W., Xu, L., Hou, H. Q., & You, T. Y. (2011). A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosensors and Bioelectronics, 26, 4585–4590. doi:10.1016/j.bios.2011.05.034.

    Article  CAS  Google Scholar 

  6. Razmi, A., Hallaj, R., Soltanian, S., & Mamkhezri, H. (2007). Self-assembled Prussian blue nanoparticles based electrochemical sensor for high sensitive determination of H2O2 in acidic media. Electroanalysis, 21, 2355–2362. doi:10.1002/elan.200904687.

    Article  Google Scholar 

  7. Zhang, L., Li, H., Ni, Y., Li, J., Liao, K., & Zhao, G. (2009). Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochemistry Communications, 11(4), 812–815. doi:10.1016/j.elecom.2009.01.041.

    Article  CAS  Google Scholar 

  8. Wang, Y., Chen, X., & Zhu, J.-J. (2009). Fabrication of a novel hydrogen peroxide biosensor based on the AuNPs–C@SiO2 composite. Electrochemistry Communications, 11(2), 323–326. doi:10.1016/j.elecom.2008.11.056.

    Article  CAS  Google Scholar 

  9. Anjalidevi, C., Dharuman, V., & Shankara Narayanan, J. (2013). Non enzymatic hydrogen peroxide detection at ruthenium oxide–gold nano particle–Nafion modified electrode. Sensors and Actuators B: Chemical, 182, 256–263. doi:10.1016/j.snb.2013.03.006.

    Article  CAS  Google Scholar 

  10. Aghebati-maleki, L., Salehi, B., Behfar, R., Saeidmanesh, H., Ahmadian, F., Sarebanhassanabadi, M., & Negahdary, M. (2014). Designing a hydrogen peroxide biosensor using catalase and modified electrode with magnesium oxide nanoparticles. International Journal of Electrochemical Science, 9, 257–271.

    Google Scholar 

  11. Zhang, J., Zhang, S. Y., Xu, J. J., & Chen, H. Y. (2004). A new method for the synthesis of selenium nanoparticles and the application to construction of H2O2 biosensor. Chinese Chemical Letters, 15(11), 1345–1348.

    CAS  Google Scholar 

  12. Bao, Y. P., & Williamson, G. (2000). Selenium-dependent glutathione peroxidases: a highlight of the role of phospholipid hydroperoxide gluthathione peroxidase in protection against oxidative damage. Progress in Natural Science: Materials International, 10, 321–330.

    CAS  Google Scholar 

  13. Shen, H. M., Yang, C. F., Ding, W. X., Liu, J., & Ong, C. N. (2001). Superoxide radical initiated apoptotic signalling pathway in selenite trated HepG2 cells: mitochondria serve as the main target. Free Radical Biology & Medicine, 30, 9–21. doi:10.1016/S0891-5849(00)00421-4.

    Article  CAS  Google Scholar 

  14. Li, Q., & Yam, V. W.-W. (2006). High-yield synthesis of selenium nanowires in water at room temperature. Chemical Communications (Cambridge, England), 9, 1006–1008. doi:10.1039/b515025f.

    Article  Google Scholar 

  15. Zhu, Y., Qian, Y., Huang, H., & Zhang, M. (1996). Preparation of nanometer-size selenium powders of uniform particle size by γ-irradiation. Materials Letters, 28(1–3), 119–122. doi:10.1016/0167-577X(96)00046-8.

    Article  CAS  Google Scholar 

  16. Shah, C. P., Kumar, M., Pushpa, K. K., & Bajaj, P. N. (2008). Acrylonitrile-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles. Crystal Growth & Design, 8(11), 4159–4164. doi:10.1021/cg800669d.

    Article  CAS  Google Scholar 

  17. Chen, Y., Zhang, W., Fan, Y., Xu, X., & Zhang, Z. (2006). Hydrothermal preparation of selenium nanorods. Materials Chemistry and Physics, 98(2–3), 191–194. doi:10.1016/j.matchemphys.2005.05.051.

    Article  CAS  Google Scholar 

  18. Prasad, K. S., Vyas, P., Prajapati, V., Patel, P., & Selvaraj, K. (2012). Biomimetic synthesis of selenium nanoparticles using cell-free extract of Microbacterium sp. ARB05. Micro & Nano Letters, 7, 1–4. doi:10.1049/mnl.2011.0498.

    Article  Google Scholar 

  19. Dhanjal, S., & Cameotra, S. S. (2010). Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microbial Cell Factories, 9, 52. doi:10.1186/1475-2859-9-52.

    Article  Google Scholar 

  20. Prasad, K. S., Patel, H., Patel, T., Patel, K., & Selvaraj, K. (2013). Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids and Surfaces B: Biointerfaces, 103, 261–266. doi:10.1016/j.colsurfb.2012.10.029.

    Article  CAS  Google Scholar 

  21. Prasad, K. S., & Selvaraj, K. (2014). Biogenic synthesis of selenium nanoparticles and their effect on As(III)-induced toxicity on human lymphocytes. Biological Trace Element Research, 157(3), 275–283. doi:10.1007/s12011-014-9891-0.

    Article  CAS  Google Scholar 

  22. Li, S. K., Shen, Y. H., Xie, A. J., Yu, X. Y., Zhang, X. Z., Yang, L. B., & Li, C. H. (2007). Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L. extract. Nanotechnology, 18, 405101–405109. doi:10.1088/0957-4484/18/40/405101.

    Article  Google Scholar 

  23. Parikh, R. Y., Singh, S., Prasad, B. L. V., Patole, M. S., Sastry, M., & Shouche, Y. S. (2008). Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. ChemBioChem, 9, 1415–1422. doi:10.1002/cbic.200700592.

    Article  CAS  Google Scholar 

  24. Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 96, 13611–13614.

    Article  CAS  Google Scholar 

  25. Mukherjee, P., Ahmed, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Parishcha, R., Ajaykumar, P. V., Alam, M., Kumar, R., & Sastry, M. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Letters, 1, 515–519. doi:10.1021/nl0155274.

    Article  CAS  Google Scholar 

  26. Kowshik, M., Shriwas, A., Sharmin, K., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M. (2003). Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 14, 95–100. doi:10.1088/0957-4484/14/1/321.

    Article  CAS  Google Scholar 

  27. Wang, T., Yang, L., Zhang, B., & Liu, J. (2010). Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids and Surfaces B: Biointerfaces, 80(1), 94–102. doi:10.1016/j.colsurfb.2010.05.041.

    Article  CAS  Google Scholar 

  28. Jia, N., Huang, B., Chen, L., Tan, L., & Yao, S. (2014). A simple non-enzymatic hydrogen peroxide sensor using gold nanoparticles-graphene-chitosan modified electrode. Sensors and Actuators B, 195, 165–170. doi:10.1016/j.snb.2014.01.043.

    Article  CAS  Google Scholar 

  29. Song, X. C., Tong, Y. J., Zheng, Y. F., & Yin, H. Y. (2012). Hydrothermal synthesis and electrocatalytic application of the Ag nanorods. Current Nanoscience, 8, 608–611.

    Article  CAS  Google Scholar 

  30. Song, X. C., Wang, X., Zheng, Y. F., Ma, R., & Yin, H. Y. (2011). A hydrogen peroxide electrochemical sensor based on Ag nanoparticles grow on ITO substrate. Journal of Nanoparticle Research, 13, 5449. doi:10.1007/s11051-011-0532-7.

    Article  CAS  Google Scholar 

  31. Zhao, Y., & Song, X. C. (2011). Synthesis and electrocatalytic property of Ni(OH)2 nanoplates for H2O2 reduction. Micro & Nano Letters, 6, 995–997.

    Article  CAS  Google Scholar 

  32. Lian, W., Wang, L., Song, Y., Yuan, H., Zhao, S., Li, P., & Chen, L. (2009). A hydrogen peroxide sensor based on electrochemically roughened silver electrodes. Electrochimica Acta, 54, 4334. doi:10.1016/j.electacta.2009.02.106.

    Article  CAS  Google Scholar 

  33. Valentini, F., Amine, A., Orlanducci, S., Terranova, M. L., & Palleschi, G. (2003). Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Analytical Chemistry, 75, 5413. doi:10.1021/ac0300237.

    Article  CAS  Google Scholar 

  34. Song, M., Hwang, S. W., & Whang, D. (2010). Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen. Talanta, 80, 1648. doi:10.1016/j.talanta.2009.09.061.

    Article  CAS  Google Scholar 

  35. Guo, S., Wen, D., Dong, S., & Wang, E. (2009). Gold nanowire assembling architecture for H2O2 electrochemical. Talanta, 77, 1510. doi:10.1016/j.talanta.2008.09.042.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KSP is grateful to Mr. Vipul J. Patel, senior scientific officer at DST (Department Science and Technology) sponsored SICART (Sophisticated Instrumentation Center for Applied Research and Testing) Anand, Gujarat, India, for his help in the analysis of samples.

Conflict of Interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Suranjit Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, K.S., Vaghasiya, J.V., Soni, S.S. et al. Microbial Selenium Nanoparticles (SeNPs) and Their Application as a Sensitive Hydrogen Peroxide Biosensor. Appl Biochem Biotechnol 177, 1386–1393 (2015). https://doi.org/10.1007/s12010-015-1814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1814-9

Keywords

Navigation