Control, D., & Trial, C. (2005). Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. The New England Journal of Medicine, 353, 2643.
Article
Google Scholar
Shamoon, H., Duffy, H., Fleischer, N., Engel, S., Saenger, P., Strelzyn, M., Litwak, M., Wylierosett, J., Farkash, A., & Geiger, D. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New England Journal of Medicine, 329, 977–986.
Article
Google Scholar
Reach, G., & Wilson, G. S. (1992). Can continuous glucose monitoring be used for the treatment of diabetes? Analytical Chemistry, 64, 381A–386A.
CAS
Google Scholar
Sun, X., Stagon, S., Huang, H., Chen, J., & Lei, Y. (2014). Functionalized aligned silver nanorod arrays for glucose sensing through surface enhanced Raman scattering. RSC Advances, 4, 23382–23388.
CAS
Article
Google Scholar
Newman, J. D., & Turner, A. P. (2005). Home blood glucose biosensors: a commercial perspective. Biosensors and Bioelectronics, 20, 2435–2453.
CAS
Article
Google Scholar
Klonoff, D. C. (2005). Continuous glucose monitoring roadmap for 21st century diabetes therapy. Diabetes Care, 28, 1231–1239.
Article
Google Scholar
Pickup, J. C., Hussain, F., Evans, N. D., Rolinski, O. J., & Birch, D. J. (2005). Fluorescence-based glucose sensors. Biosensors and Bioelectronics, 20, 2555–2565.
CAS
Article
Google Scholar
Chan, W. C., Maxwell, D. J., Gao, X., Bailey, R. E., Han, M., & Nie, S. (2002). Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology, 13, 40–46.
CAS
Article
Google Scholar
Clapp, A. R., Medintz, I. L., Mauro, J. M., Fisher, B. R., Bawendi, M. G., & Mattoussi, H. (2004). Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Journal of the American Chemical Society, 126, 301–310.
CAS
Article
Google Scholar
Mopidevi, S., Chen, J., Ma, X., Galil, K. H. A. E. and Lei, Y. (2015) PEG-fluorescein-GOx hydrogel for glucose biosensing. ScienceJet, 4. Article # 159.
Odaci, D., Gacal, B. N., Gacal, B., Timur, S., & Yagci, Y. (2009). Fluorescence sensing of glucose using glucose oxidase modified by PVA-pyrene prepared via “click” chemistry. Biomacromolecules, 10, 2928–2934.
CAS
Article
Google Scholar
Vaddiraju, S., Burgess, D. J., Tomazos, I., Jain, F. C., & Papadimitrakopoulos, F. (2010). Technologies for continuous glucose monitoring: current problems and future promises. Journal of Diabetes Science and Technology, 4, 1540–1562.
Article
Google Scholar
Gerlach, G., & Arndt, K.-F. (2009). Hydrogel sensors and actuators: engineering and technology. Springer Science & Business Media.
Lim, N. C., Pavlova, S. V., & Brückner, C. (2008). Squaramide hydroxamate-based chemidosimeter responding to iron (III) with a fluorescence intensity increase. Inorganic Chemistry, 48, 1173–1182.
Article
Google Scholar
Peng, H. T., Blostein, M. D., & Shek, P. N. (2009). Experimental optimization of an in situ forming hydrogel for hemorrhage control. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 89, 199–209.
Article
Google Scholar
Mossavarali, S., Hosseinkhani, S., Ranjbar, B., & Miroliaei, M. (2006). Stepwise modification of lysine residues of glucose oxidase with citraconic anhydride. International Journal of Biological Macromolecules, 39, 192–196.
CAS
Article
Google Scholar
Li, L., Ge, J., Guo, B., & Ma, P. X. (2014). In situ forming biodegradable electroactive hydrogels. Polymer Chemistry, 5, 2880–2890.
CAS
Article
Google Scholar
Dinu, M. V., Ozmen, M. M., Dragan, E. S., & Okay, O. (2007). Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels. Polymer, 48, 195–204.
CAS
Article
Google Scholar
Chao, G., Deng, H., Huang, Q., Jia, W., Huang, W., Gu, Y., Tan, H., Fan, L., Liu, C., & Huang, A. (2006). Preparation and characterization of pH sensitive semi-interpenetrating network hydrogel based on methacrylic acid, bovine serum albumin (BSA), and PEG. Journal of Polymer Research, 13, 349–355.
CAS
Article
Google Scholar
Kiskan, B., & Yagci, Y. (2007). Thermally curable benzoxazine monomer with a photodimerizable coumarin group. Journal of Polymer Science Part A: Polymer Chemistry, 45, 1670–1676.
CAS
Article
Google Scholar
Brøndsted, H. and Kopec̆ek, J. i. (1991) Hydrogels for site-specific oral drug delivery: synthesis and characterization. Biomaterials, 12, 584–592.
Bryant, S. J., Arthur, J. A., & Anseth, K. S. (2005). Incorporation of tissue-specific molecules alters chondrocyte metabolism and gene expression in photocrosslinked hydrogels. Acta Biomaterialia, 1, 243–252.
Article
Google Scholar
Chivukula, P., Dušek, K., Wang, D., Dušková-Smrčková, M., Kopečková, P., & Kopeček, J. (2006). Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels. Biomaterials, 27, 1140–1151.
CAS
Article
Google Scholar
Coviello, T., Alhaique, F., Parisi, C., Matricardi, P., Bocchinfuso, G., & Grassi, M. (2005). A new polysaccharidic gel matrix for drug delivery: preparation and mechanical properties. Journal of Controlled Release, 102, 643–656.
CAS
Article
Google Scholar
Drury, J. L., Dennis, R. G., & Mooney, D. J. (2004). The tensile properties of alginate hydrogels. Biomaterials, 25, 3187–3199.
CAS
Article
Google Scholar
Zhang, X.-Z., Lewis, P. J., & Chu, C.-C. (2005). Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel. Biomaterials, 26, 3299–3309.
CAS
Article
Google Scholar
Gayet, J.-C., He, P., & Fortier, G. (1998). Bioartificial polymeric material: poly (ethylene glycol) crosslinked with albumin. II: mechanical and thermal properties. Journal of Bioactive and Compatible Polymers, 13, 179–197.
CAS
Google Scholar
Gulrez, S. K., Phillips, G. O., & Al-Assaf, S. (2011). Hydrogels: methods of preparation, characterisation and (applications. ed., ). INTECH Open Access Publisher.
Peppas, N. A., & Barr-Howell, B. D. (1986). Characterization of the crosslinked structure of hydrogels. Hydrogels in Medicine and Pharmacy, 1, 27–56.
CAS
Google Scholar
Heo, Y. J., Shibata, H., Okitsu, T., Kawanishi, T. and Takeuchi, S. (2011) Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proceedings of the National Academy of Sciences, 108, 13399–13403.
Shibata, H., Heo, Y. J., Okitsu, T., Matsunaga, Y., Kawanishi, T. and Takeuchi, S. (2010) Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proceedings of the National Academy of Sciences, 107, 17894–17898.