Diversity of Lactobacillus reuteri Strains in Converting Glycerol into 3-Hydroxypropionic Acid

Abstract

The present study aims at comparing the performances of three Lactobacillus reuteri strains (DSM 20016, DSM 17938, and ATCC 53608) in producing 3-hydroxypropionic acid (3-HP) from glycerol and at exploring inhibition phenomena during this bioconversion. Differences were highlighted between the three strains in terms of 3-HP production yield, kinetics of substrate consumption, and metabolite production. With a maximal productivity in non-optimal conditions (free pH) around 2 g.L−1.h−1 of 3-HP and 4 g.L−1.h−1 of 3-hydroxypropionaldehyde (3-HPA) depending on the strain, this study confirmed the potential of L. reuteri for the biotechnological production of 3-HP. Moreover, the molar ratios of 3-HP to 1,3-propanediol (1,3-PDO) obtained for the three strains (comprised between 1.25 and 1.65) showed systematically a higher 3-HP production. From these results, the DSM 17938 strain appeared to be the most promising strain. The impact of glycerol bioconversion on the bacteria’s physiological state (a decrease of around 40 % in DSM 17938 cells showing an enzymatic activity after 3 h) and survival (total loss of cultivability after 2 or 3 h depending on the strains) was revealed and discussed. The effect of each metabolite on L. reuteri DSM 17938 was further investigated, displaying a drastic inhibition caused by 3-HPA, while 3-HP induced lower impact and only at acidic pH.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    da Silva, G. P., Mack, M., & Contiero, J. (2009). Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv., 27, 30–39.

    Article  Google Scholar 

  2. 2.

    Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., & Della Pina, C. (2009). Recent advances in the conversion of bioglycerol into value-added products. Eur. J. Lipid. Sci. Technol., 111, 788–799.

    CAS  Article  Google Scholar 

  3. 3.

    Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green. Chem., 12, 539–554.

    CAS  Article  Google Scholar 

  4. 4.

    Zhang, D., Hillmyer, M. A., & Tolman, W. B. (2004). A new synthetic route to poly[3-hydroxypropionic acid] (P[3-HP]): ring-opening polymerization of 3-HP macrocyclic esters. Macromol., 37, 8198–8200.

    CAS  Article  Google Scholar 

  5. 5.

    Andreeßen, B., Lange, A. B., Robenek, H., & Steinbüchel, A. (2010a). Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl. Microbiol. Biotechnol., 76, 622–626.

    Google Scholar 

  6. 6.

    Andreeßen, B., & Steinbüchel, A. (2010b). Biosynthesis and biodegradation of 3-hydroxypropionate-containing polyesters. Appl. Environ. Microbiol., 76, 4919–4925.

    Article  Google Scholar 

  7. 7.

    Heinrich, D., Andreeßen, B., Madkour, M. H., Al-Ghamd, M. A., Shabbaj, I. I., & Steinbüchel, A. (2013). From waste to plastic: synthesis of poly(3-hydroxypropionate). Appl. Environ. Microbiol., 79, 3582–3589.

    CAS  Article  Google Scholar 

  8. 8.

    Gokarn, R.R., Selifonova, O.V., Jessen, H.J., Steven, J.G., Selmer, T., & Buckel, W. (2002). 3-hydroxypropionic acid and other organic compounds. Patent application no. PCT/US2002/42418 A2 (Cargill, Inc.).

  9. 9.

    Tsobanakis, P., Meng, X., & Abraham, T.W. (2009). Methods of manufacturing derivatives of beta-hydroxylic acids. Patent application no.PCT/US2009/0298144 A1 (Cargill, Inc.).

  10. 10.

    Lilga, M.A., White, J.F., Holladay, J.E., Zacher, A.H., Muzatko, D.S., & Orth, R.J. (2010). Method for conversion of β-hydroxy carbonyl compounds. Patent application no. PCT/US2007/687661 B2 (Battelle Memorial Institute).

  11. 11.

    Della Pina, C., Falletta, E., & Rossi, M. (2011). A green approach to chemical building blocks. The case of 3-hydroxypropanoic acid. Green. Chem, 13, 1624–1632.

    CAS  Article  Google Scholar 

  12. 12.

    Arceo, E., Marsden, P., Bergman, R. G., & Ellman, J. A. (2009). An efficient didehydroxylation method for the biomass-derived polyols glycerol and erythritol. Mechanistic studies of a formic acid-mediated deoxygenation. Chem. Commun., 23, 3357–3359.

    Article  Google Scholar 

  13. 13.

    Luo, L. H., Seo, J. W., Baek, J. O., Oh, B. R., Heo, S., Hong, W. K., Kim, D. H., & Kim, C. H. (2011). Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol. Appl. Microbiol. Biotechnol., 89, 697–703.

    CAS  Article  Google Scholar 

  14. 14.

    Kumar, V., Ashok, S., & Park, S. (2013a). Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol. Adv., 31, 945–961.

    CAS  Article  Google Scholar 

  15. 15.

    Dishisha, T., Pereyra, L. P., Pyo, S. H., Britton, R. A., & Hatti-Kaul, R. H. (2014). Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Microb. Cell Fact., 13, 76–85.

    Article  Google Scholar 

  16. 16.

    Ashok, S., Raj, S. M., Rathnasingh, C., & Park, S. (2011). Development of recombinant Klebsiella pneumoniae ΔdhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Appl. Microbiol. Biotechnol., 90, 1253–1265.

    CAS  Article  Google Scholar 

  17. 17.

    Kumar, V., Sankaranarayanan, M., Durgapal, M., Zhou, S., Ko, Y., Ashok, S., Sarkar, R., & Park, S. (2013b). Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of the lactate dehydrogenase-deficient recombinant Klebsiella pneumoniae overexpressing an aldehyde dehydrogenase. Bioresour. Technol., 135, 555–563.

    CAS  Article  Google Scholar 

  18. 18.

    Kwak, S., Park, Y. C., & Seo, J. H. (2013). Biosynthesis of 3-hydroxypropionic acid from glycerol in recombinant Escherichia coli expressing Lactobacillus brevis dhaB and dhaR gene clusters and E. coli K-12 aldH. Bioresour. Technol., 135, 432–439.

    CAS  Article  Google Scholar 

  19. 19.

    Kim, K., Kim, S. K., Park, Y. C., & Jin-Ho Seo, J. H. (2014). Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour. Technol., 156, 170–175.

    CAS  Article  Google Scholar 

  20. 20.

    Jung, W. S., Kang, J. H., Chu, H. S., Choi, I. S., & Cho, K. M. (2014). Elevated production of 3-hydroxypropionic acid by metabolic engineering of the glycerol metabolism in Escherichia coli. Metabol. Eng., 23, 116–122.

    CAS  Article  Google Scholar 

  21. 21.

    Talarico, T. L., & Dobrogosz, W. J. (1990). Purification and characterization of glycerol dehydratase from Lactobacillus reuteri. Appl. Env. Microbiol., 56, 1195–1197.

    CAS  Google Scholar 

  22. 22.

    Sriramulu, D. D., Liang, M., Hernandez-Romero, D., Raux-Deery, E., Lunsdorf, H., Parsons, J. B., Warren, M. J., & Prentice, M. B. (2008). Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. J. Bacteriol., 190, 4559–4567.

    CAS  Article  Google Scholar 

  23. 23.

    Sardari, R. R. R., Dishisha, T., Pyo, S. H., & Hatti-Kaul, R. (2013a). Improved production of 3-hydroxypropionaldehyde by complex formation with bisulfite during bio-transformation of glycerol. Biotechnol. Bioeng., 110, 1243–1248.

    CAS  Article  Google Scholar 

  24. 24.

    Sardari, R. R. R., Dishisha, T., Pyo, S. H., & Hatti-Kaul, R. (2013b). Biotransformation of glycerol to 3-hydroxypropionaldehyde: Improved production by in situ complexation with bisulfate in a fed-batch mode and separation on anion exchanger. J. Biotechnol., 168, 534–542.

    CAS  Article  Google Scholar 

  25. 25.

    Sabet-Azad, R., Linares-Pasten, J.A., Torkelson, L., Sardari, R.R.R., & Hatti-Kaul, R. (2013). Coenzyme A-acylating propionaldehyde dehydrogenase (PduP) from Lactobacillus reuteri: Kinetic characterization and molecular modeling. Enzyme Microb. Technol. 53, 235–242.

  26. 26.

    Stevens, M. J. A., Vollenweider, S., Meile, L., & Lacroix, C. (2011). 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production. Microb. Cell Fact., 10, 61–69.

    CAS  Article  Google Scholar 

  27. 27.

    Morita, H., Toh, H., Fukuda, S., Horikawa, H., Oshima, K., Suzuki, T., Murakami, M., Hisamatsu, S., Kato, Y., Takizawa, T., Fukuoka, H., Yoshimura, T., Itoh, K., O’Sullivan, D. J., McKay, L. L., Ohno, H., Kikuchi, J., Masaoka, T., & Hattori, M. (2008). Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res., 15, 151–161.

    CAS  Article  Google Scholar 

  28. 28.

    Vollenweider, S., & Lacroix, C. (2004). 3-Hydroxypropionaldehyde: applications and perspectives of biotechnological production. Appl. Microbiol. Biotechnol., 64, 16–27.

    CAS  Article  Google Scholar 

  29. 29.

    Cleusix, V., Lacroix, C., Vollenweider, S., & Le Blay, G. (2007). Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol., 7, 101–109.

    Article  Google Scholar 

  30. 30.

    Spinler, J. K., Taweechotipatr, M., Rognerud, C. L., Oub, C. N., Tumwasorn, S., & Versalovic, J. (2008). Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe, 14, 166–171.

    CAS  Article  Google Scholar 

  31. 31.

    Schaefer, L., Auchtung, T. A., Hermans, K. E., Whitehead, D., Borhan, B., & Britton, R. A. (2010). The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiol., 156, 1589–1599.

    CAS  Article  Google Scholar 

  32. 32.

    Sebastianes, F. L. S., Cabedo, N., El Aouad, N., Valente, A. M. M. P., Lacava, P. T., Azevedo, J. L., Pizzirani-Kleiner, A. A., & Cortes, D. (2012). 3-Hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr. Microbiol., 65, 622–632.

    CAS  Article  Google Scholar 

  33. 33.

    Warnecke, T. E., Lynch, M. D., Lipscomb, M. L., & Gill, R. T. (2012). Identification of a 21 amino acid peptide conferring 3-hydroxypropionic acid stress-tolerance to Escherichia coli. Biotechnol. and Bioeng., 109, 1347–1352.

    CAS  Article  Google Scholar 

  34. 34.

    Colin, T., Bories, A., & Moulin, G. (2000). Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl. Microbiol. Biotechnol., 54, 201–205.

    CAS  Article  Google Scholar 

  35. 35.

    Rosander, A., Connolly, E., & Roos, S. (2008). Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl. Environ. Microbiol., 74, 6032–6040.

    CAS  Article  Google Scholar 

  36. 36.

    Corrieu, G., Spinnler, H.E., Jomier, Y., & Picque, D. (1988). Automated system to follow up and control the acidification activity of lactic acid starters. Patent application no. FR 2 629 612 (INRA).

  37. 37.

    Spinnler, H. E., & Corrieu, G. (1989). Automatic method to quantify starter activity based on pH measurement. J. Dairy Res., 56, 755–764.

    Article  Google Scholar 

  38. 38.

    Rault, A., Béal, C., Ghorbal, S., Ogier, J. C., & Bouix, M. (2007). Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage. Cryobiol, 55, 35–43.

    CAS  Article  Google Scholar 

  39. 39.

    Vollenweider, S., Grassi, G., König, I., & Puhan, Z. (2003). Purification and structural characterization of 3-hydroxypropionaldehyde and its derivatives. J. Agric. Food Chem., 51, 3287–3293.

    CAS  Article  Google Scholar 

  40. 40.

    Barbirato, F., Grivet, J. P., Soucaille, P., & Bories, A. (1996). 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl. Environ. Microbiol., 62, 1448–1451.

    CAS  Google Scholar 

  41. 41.

    Vollenweider, S., Evers, S., Zurbriggen, K., & Lacroix, C. (2010). Unraveling the HPA system: an active antimicrobial agent against human pathogens. J. Agric. Food Chem., 58, 10315–10322.

    CAS  Article  Google Scholar 

  42. 42.

    van Maris, A. J. A., Konings, W. N., van Dijken, J. P., & Pronk, J. T. (2004). Microbial export of lactic acid and 3-hydroxypropanoic acid: implications for industrial fermentation processes. Metab. Eng., 6, 245–255.

    Article  Google Scholar 

  43. 43.

    Warnecke, T. E., Lynch, M. D., Karimpour-Fard, A., Lipscomb, M. L., Handke, P., Mills, P. T., Ramey, C. J., Hoang, T., & Gill, R. T. (2010). Rapid dissection of a complex phenotype through genomic scale mapping of fitness altering genes. Metabol. Eng., 12, 241–250.

    CAS  Article  Google Scholar 

  44. 44.

    van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S. D., & Maguin, E. (2002). Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek, 82, 187–216.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Chandanie Hunter for correcting the English version of the manuscript.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H.E. Spinnler.

Electronic supplementary material

Online Resource 1

(DOC 89 kb)

Online Resource 2

(DOC 55 kb)

Online Resource 3

(DOC 368 kb)

Online Resource 4

(DOC 374 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burgé, G., Saulou-Bérion, C., Moussa, M. et al. Diversity of Lactobacillus reuteri Strains in Converting Glycerol into 3-Hydroxypropionic Acid. Appl Biochem Biotechnol 177, 923–939 (2015). https://doi.org/10.1007/s12010-015-1787-8

Download citation

Keywords

  • 3-Hydroxypropionic acid
  • Lactobacillus reuteri
  • Glycerol bioconversion
  • Inhibitory activity