Skip to main content
Log in

Thermodynamic and Probabilistic Metabolic Control Analysis of Riboflavin (Vitamin B2) Biosynthesis in Bacteria

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we applied a coupled in silico thermodynamic and probabilistic metabolic control analysis methodology to investigate the control mechanisms of the commercially relevant riboflavin biosynthetic pathway in bacteria. Under the investigated steady-state conditions, we found that several enzyme reactions of the pathway operate far from thermodynamic equilibrium (transformed Gibbs energies of reaction below about −17 kJ mol−1). Using the obtained thermodynamic information and applying enzyme elasticity sampling, we calculated the distributions of the scaled concentration control coefficients (CCCs) and scaled flux control coefficients (FCCs). From the statistical analysis of the calculated distributions, we inferred that the control over the riboflavin producing flux is shared among several enzyme activities and mostly resides in the initial reactions of the pathway. More precisely, the guanosine triphosphate (GTP) cyclohydrolase II activity, and therefore the bifunctional RibA protein of Bacillus subtilis because it catalyzes this activity, appears to mainly control the riboflavin producing flux (mean FCCs = 0.45 and 0.55, respectively). The GTP cyclohydrolase II activity and RibA also exert a high positive control over the riboflavin concentration (mean CCCs = 2.43 and 2.91, respectively). This prediction is consistent with previous findings for microbial riboflavin overproducing strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

i :

Enzyme reaction number (i = 1 ,  …  , 9)

Δ r G ' :

Vector of transformed Gibbs energies of reaction

Δr G ' :

Transformed Gibbs energy of reaction (general symbol)

Δr G ' i :

Transformed Gibbs energy of reaction for reaction i

Δ r G '0 :

Vector of standard transformed Gibbs energies of reaction

Err(Δ r G '0):

Vector of possible error values of the standard transformed Gibbs energies of reaction

Err(Δ r G '0) MAX :

Vector of maximal error values of the standard transformed Gibbs energies of reaction

R :

Universal gas constant

T :

Temperature

N T :

Transposed stoichiometric matrix in the thermodynamic analysis

c :

Vector of metabolite concentrations

c min :

Vector of minimum metabolite concentrations

c max :

Vector of maximum metabolite concentrations

ρ :

Vector of disequilibrium ratios

ρ i :

Disequilibrium ratio of reaction i

v :

Vector of steady-state fluxes

V :

Diagonal matrix of steady-state fluxes

v net :

Vector of steady-state net fluxes

v − , i :

Backward steady-state flux of reaction i

v + , i :

Forward steady-state flux of reaction i

v net , i :

Steady-state net flux of reaction i

M :

Vector of steady-state metabolite concentrations in the metabolic control analysis

[X]:

Steady-state concentration of metabolite X

e :

Vector of enzyme concentrations

\( {\mathbf{C}}_{\mathbf{e}}^{\mathbf{v}} \) :

Matrix of scaled flux control coefficients

\( {C}_{e_i}^{v_{net,7}} \), \( {C}_{e_Y}^{v_{net,7}} \) :

Scaled flux control coefficient of reaction i or of a specific enzyme Y with respect to the riboflavin synthase flux v net , 7

\( {\mathbf{C}}_{\mathbf{e}}^{\mathbf{M}} \) :

Matrix of scaled concentration control coefficients

\( {C}_{e_i}^{\left[X\right]} \), \( {C}_{e_Y}^{\left[X\right]} \) :

Scaled concentration control coefficient of reaction i or of a specific enzyme Y with respect to metabolite concentration [X]

N MCA :

Stoichiometric matrix of the metabolic control analysis

\( {\mathbf{E}}_{\mathbf{M}}^{\mathbf{v}} \) :

Matrix of scaled elasticities: local sensitivities of v to changes in M

\( {\boldsymbol{\Pi}}_{\mathbf{e}}^{\mathbf{v}} \) :

Matrix of scaled elasticities: local sensitivities of v to changes in e

References

  1. Hohmann, H.-P., & Stahmann, K.-P. (2010). Biotechnology of riboflavin production. In Comprehensive natural products II. Chemistry and Biology, vol. 7: Cofactors (Mander, L. & Liu, H.-W., eds.), Elsevier, Amsterdam, New York, Paris, pp. 115–139.

    Chapter  Google Scholar 

  2. Kato, T., & Park, E. Y. (2012). Riboflavin production by Ashbya gossypii. Biotechnology Letters, 34, 611–618.

    Article  CAS  Google Scholar 

  3. Stahmann, K.-P., Revuelta, J. L., & Seulberger, H. (2000). Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Applied Microbiology and Biotechnology, 53, 509–516.

    Article  CAS  Google Scholar 

  4. Lin, Z., Xu, Z., Li, Y., Wang, Z., Chen, T., & Zhao, X. (2014). Metabolic engineering of Escherichia coli for the production of riboflavin. Microbial Cell Factories, 13, 104.

    Google Scholar 

  5. Koizumi, S., Yonetani, Y., Maruyama, A., & Teshiba, S. (2000). Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Applied Microbiology and Biotechnology, 53, 674–679.

    Article  CAS  Google Scholar 

  6. Abbas, C. A., & Sibirny, A. A. (2011). Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiology and Molecular Biology Reviews, 75, 321–360.

    Article  CAS  Google Scholar 

  7. Hümbelin, M., Griesser, V., Keller, T., Schurter, W., Haiker, M., Hohmann, H.-P., Ritz, H., Richter, G., Bacher, A., & van Loon, A. P. G. M. (1999). GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. Journal of Industrial Microbiology & Biotechnology, 22, 1–7.

    Article  Google Scholar 

  8. Lehmann, M., Degen, S., Hohmann, H.-P., Wyss, M., Bacher, A., & Schramek, N. (2009). Biosynthesis of riboflavin. Screening for an improved GTP cyclohydrolase II mutant. FEBS Journal, 276, 4119–4129.

    Article  CAS  Google Scholar 

  9. Dauner, M., & Sauer, U. (2001). Stoichiometric growth model for riboflavin-producing Bacillus subtilis. Biotechnology and Bioengineering, 76, 132–143.

    Article  CAS  Google Scholar 

  10. Sauer, U., Hatzimanikatis, V., Bailey, J. E., Hochuli, M., Szyperski, T., & Wüthrich, K. (1997). Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nature Biotechnology, 15, 448–452.

    Article  CAS  Google Scholar 

  11. Perkins, J. B., Sloma, A., Hermann, T., Theriault, K., Zachgo, E., Erdenberger, T., Hannett, N., Chatterjee, N. P., Williams II, V., Rufo Jr., G. A., et al. (1999). Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. Journal of Industrial Microbiology & Biotechnology, 22, 8–18.

    Article  CAS  Google Scholar 

  12. Wiechert, W. (2002). Modeling and simulation: tools for metabolic engineering. Journal of Biotechnology, 94, 37–63.

    Article  CAS  Google Scholar 

  13. Cvijovic, M., Bordel, S., & Nielsen, J. (2011). Mathematical models of cell factories: moving towards the core of industrial biotechnology. Microbial Biotechnology, 4, 572–584.

    Article  CAS  Google Scholar 

  14. Woolston, B. M., Edgar, S., & Stephanopoulos, G. (2013). Metabolic engineering: past and future. Annual Review of Chemical and Biomolecular Engineering, 4, 259–288.

    Article  CAS  Google Scholar 

  15. Kacser, H., & Burns, J. A. (1973). The control of flux. Symposia of the Society for Experimental Biology, 27, 65–104.

    CAS  Google Scholar 

  16. Heinrich, R., & Rapoport, T. A. (1974). A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. European Journal of Biochemistry, 42, 89–95.

    Article  CAS  Google Scholar 

  17. Fell, D. (1997). Understanding the control of metabolism (1st ed., ). London, Miami:Portland Press.

    Google Scholar 

  18. Hua, Q., Yang, C., & Shimizu, K. (2000). Metabolic control analysis for lysine synthesis using Corynebacterium glutamicum and experimental verification. Journal of Bioscience and Bioengineering, 90, 184–192.

    Article  CAS  Google Scholar 

  19. Cintolesi, A., Clomburg, J. M., Rigou, V., Zygourakis, K., & Gonzalez, R. (2012). Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli. Biotechnology and Bioengineering, 109, 187–198.

    Article  CAS  Google Scholar 

  20. Almquist, J., Cvijovic, M., Hatzimanikatis, V., Nielsen, J., & Jirstrand, M. (2014). Kinetic models in industrial biotechnology—improving cell factory performance. Metabolic Engineering, 24, 38–60.

    Article  CAS  Google Scholar 

  21. Wang, L., Birol, I., & Hatzimanikatis, V. (2004). Metabolic control analysis under uncertainty: framework development and case studies. Biophysical Journal, 87, 3750–3763.

    Article  CAS  Google Scholar 

  22. Murabito, E., Smallbone, K., Swinton, J., Westerhoff, H. V., & Steuer, R. (2011). A probabilistic approach to identify putative drug targets in biochemical networks. Journal of The Royal Society Interface, 8, 880–895.

    Article  CAS  Google Scholar 

  23. Klipp, E., Liebermeister, W., & Wierling, C. (2004). Inferring dynamic properties of biochemical reaction networks from structural knowledge. Genome Informatics, 15, 125–137.

    CAS  Google Scholar 

  24. Steuer, R., Gross, T., Selbig, J., & Blasius, B. (2006). Structural kinetic modeling of metabolic networks. Proceedings of the National Academy of Sciences USA, 103, 11,868–11,873.

  25. Tran, L. M., Rizk, M. L., & Liao, J. C. (2008). Ensemble modeling of metabolic networks. Biophysical Journal, 95, 5606–5617.

    Article  CAS  Google Scholar 

  26. Wang, L., & Hatzimanikatis, V. (2006). Metabolic engineering under uncertainty. I: framework development. Metabolic Engineering, 8, 133–141.

    Article  CAS  Google Scholar 

  27. Wang, L., & Hatzimanikatis, V. (2006). Metabolic engineering under uncertainty—II: analysis of yeast metabolism. Metabolic Engineering, 8, 142–159.

    Article  CAS  Google Scholar 

  28. Miskovic, L., & Hatzimanikatis, V. (2010). Production of biofuels and biochemicals: in need of an ORACLE. Trends in Biotechnology, 28, 391–397.

    Article  CAS  Google Scholar 

  29. Chakrabarti, A., Miskovic, L., Soh, K. C., & Hatzimanikatis, V. (2013). Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnology Journal, 8, 1043–1057.

    Article  CAS  Google Scholar 

  30. Soh, K. C., Miskovic, L., & Hatzimanikatis, V. (2012). From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Research, 12, 129–143.

    Article  CAS  Google Scholar 

  31. Birkenmeier, M., Mack, M., & Röder, T. (2015). Erratum to: A coupled thermodynamic and metabolic control analysis methodology and its evaluation on glycerol biosynthesis in Saccharomyces cerevisiae. Biotechnology Letters, 37, 317–326.

    Article  CAS  Google Scholar 

  32. Fischer, M., & Bacher, A. (2005). Biosynthesis of flavocoenzymes. Natural Product Reports, 22, 324–350.

    Article  CAS  Google Scholar 

  33. Richter, G., Volk, R., Krieger, C., Lahm, H.-W., Röthlisberger, U., & Bacher, A. (1992). Biosynthesis of riboflavin: cloning, sequencing, and expression of the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli. Journal of Bacteriology, 174, 4050–4056.

    CAS  Google Scholar 

  34. Richter, G., Ritz, H., Katzenmeier, G., Volk, R., Kohnle, A., Lottspeich, F., Allendorf, D., & Bacher, A. (1993). Biosynthesis of riboflavin: cloning, sequencing, mapping, and expression of the gene coding for GTP cyclohydrolase II in Escherichia coli. Journal of Bacteriology, 175, 4045–4051.

    CAS  Google Scholar 

  35. Burgess, C. M., Smid, E. J., & van Sinderen, D. (2009). Bacterial vitamin B2, B11 and B12 overproduction: an overview. International Journal of Food Microbiology, 133, 1–7.

    Article  CAS  Google Scholar 

  36. Richter, G., Fischer, M., Krieger, C., Eberhardt, S., Lüttgen, H., Gerstenschläger, I., & Bacher, A. (1997). Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis. Journal of Bacteriology, 179, 2022–2028.

    CAS  Google Scholar 

  37. Coquard, D., Huecas, M., Ott, M., van Dijl, J. M., van Loon, A. P. G. M., & Hohmann, H.-P. (1997). Molecular cloning and characterisation of the ribC gene from Bacillus subtilis : a point mutation in ribC results in riboflavin overproduction. Molecular and General Genetics, 254, 81–84.

    Article  CAS  Google Scholar 

  38. Mack, M., van Loon, A. P. G. M., & Hohmann, H. P. (1998). Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. Journal of Bacteriology, 180, 950–955.

    CAS  Google Scholar 

  39. Kitatsuji, K., Ishino, S., Teshiba, S., & Arimoto, M. (1993). Process for producing flavine nucleotides. European Patent Application EP 0 542 240 A2 92,119,308.2.

  40. Haase, I., Sarge, S., Illarionov, B., Laudert, D., Hohmann, H.-P., Bacher, A., & Fischer, M. (2013). Enzymes from the haloacid dehalogenase (HAD) superfamily catalyse the elusive dephosphorylation step of riboflavin biosynthesis. ChemBioChem, 14, 2272–2275.

    Article  CAS  Google Scholar 

  41. Kis, K., & Bacher, A. (1995). Substrate channeling in the lumazine synthase/riboflavin synthase complex of Bacillus subtilis. The Journal of Biological Chemistry, 270, 16,788–16,795.

    Article  CAS  Google Scholar 

  42. Beard, D. A., Liang, S.-D., & Qian, H. (2002). Energy balance for analysis of complex metabolic networks. Biophysical Journal, 83, 79–86.

    Article  CAS  Google Scholar 

  43. Kümmel, A., Panke, S., & Heinemann, M. (2006). Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Molecular Systems Biology, 2, 2006.0034.

    Article  Google Scholar 

  44. Mavrovouniotis, M. L. (1993). Identification of localized and distributed bottlenecks in metabolic pathways. In Proceedings of the International Conference on Intelligent Systems for Molecular Biology, 1 (pp. 275–283).

    Google Scholar 

  45. Pissarra, P. D. N., & Nielsen, J. (1997). Thermodynamics of metabolic pathways for penicillin production: analysis of thermodynamic feasibility and free energy changes during fed-batch cultivation. Biotechnology Progress, 13, 156–165.

    Article  CAS  Google Scholar 

  46. Henry, C. S., Jankowski, M. D., Broadbelt, L. J., & Hatzimanikatis, V. (2006). Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophysical Journal, 90, 1453–1461.

    Article  CAS  Google Scholar 

  47. Henry, C. S., Broadbelt, L. J., & Hatzimanikatis, V. (2007). Thermodynamics-based metabolic flux analysis. Biophysical Journal, 92, 1792–1805.

    Article  CAS  Google Scholar 

  48. Henry, C. S., Zinner, J. F., Cohoon, M. P., & Stevens, R. L. (2009). iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biology, 10, R69.

    Article  Google Scholar 

  49. Jankowski, M. D., Henry, C. S., Broadbelt, L. J., & Hatzimanikatis, V. (2008). Group contribution method for thermodynamic analysis of complex metabolic networks. Biophysical Journal, 95, 1487–1499.

    Article  CAS  Google Scholar 

  50. Benham, T. (2011). Uniform distribution over a convex polytope. MATLAB Central File Exchange. Available from: http://www.mathworks.com/matlabcentral/fileexchange/34208-uniform-distribution-over-a-convex-polytope/content/cprnd.m. Accessed 25 September, 2013.

  51. Kaufman, D. E., & Smith, R. L. (1998). Direction choice for accelerated convergence in hit-and-run sampling. Operations Research, 46, 84–95.

    Article  Google Scholar 

  52. Rolleston, F. S. (1972). A theoretical background to the use of measured concentrations of intermediates in study of the control of intermediary metabolism. Current Topics in Cellular Regulation, 5, 47–75.

    Article  CAS  Google Scholar 

  53. Beard, D. A., & Qian, H. (2007). Relationship between thermodynamic driving force and one-way fluxes in reversible processes. PLoS ONE, 2, e144.

  54. Noor, E., Flamholz, A., Liebermeister, W., Bar-Even, A., & Milo, R. (2013). A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects. FEBS Letters, 587, 2772–2777.

    Article  CAS  Google Scholar 

  55. Soh, K. C., & Hatzimanikatis, V. (2010). Network thermodynamics in the post-genomic era. Current Opinion in Microbiology, 13, 350–357.

    Article  CAS  Google Scholar 

  56. Reder, C. (1988). Metabolic control theory: a structural approach. Journal of Theoretical Biology, 135, 175–201.

    Article  CAS  Google Scholar 

  57. Hatzimanikatis, V., Floudas, C. A., & Bailey, J. E. (1996). Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AIChE Journal, 42, 1277–1292.

    Article  CAS  Google Scholar 

  58. Cascante, M., Canela, E. I., & Franco, R. (1990). Control analysis of systems having two steps catalyzed by the same protein molecule in unbranched chains. European Journal of Biochemistry, 192, 369–371.

    Article  CAS  Google Scholar 

  59. Sauro, H. M., & Kacser, H. (1990). Enzyme-enzyme interactions and control analysis. 2. The case of non-independence: heterologous associations. European Journal of Biochemistry, 187, 493–500.

    Article  CAS  Google Scholar 

  60. Liebermeister, W., & Klipp, E. (2006). Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theoretical Biology and Medical Modelling, 3, 41.

    Article  Google Scholar 

  61. Birkenmeier, M., Neumann, S., & Röder, T. (2014). Kinetic modeling of riboflavin biosynthesis in Bacillus subtilis under production conditions. Biotechnology Letters, 36, 919–928.

    Article  CAS  Google Scholar 

  62. Noor, E., Bar-Even, A., Flamholz, A., Lubling, Y., Davidi, D., & Milo, R. (2012). An integrated open framework for thermodynamics of reactions that combines accuracy and coverage. Bioinformatics, 28, 2037–2044.

    Article  CAS  Google Scholar 

  63. Ritz, H. (1999). Molekularbiologische und proteinchemische Untersuchungen an bakteriellen GTP-Cyclohydrolasen. PhD thesis, Technische Universität München, München, DE.

  64. Römisch, W., Eisenreich, W., Richter, G., & Bacher, A. (2002). Rapid one-pot synthesis of riboflavin isotopomers. The Journal of Organic Chemistry, 67, 8890–8894.

    Article  Google Scholar 

  65. Volk, R., & Bacher, A. (1988). Biosynthesis of riboflavin. The structure of the four-carbon precursor. Journal of the American Chemical Society, 110, 3651–3653.

    Article  CAS  Google Scholar 

  66. Plaut, G. W. E. (1963). Studies on the nature of the enzymic conversion of 6,7-dimethyl-8-ribityllumazine to riboflavin. The Journal of Biological Chemistry, 238, 2225–2243.

    CAS  Google Scholar 

  67. Kis, K., Volk, R., & Bacher, A. (1995). Biosynthesis of riboflavin. Studies on the reaction mechanism of 6,7-dimethyl-8-ribityllumazine synthase. Biochemistry, 34, 2883–2892.

    Article  CAS  Google Scholar 

  68. Efimov, I., Kuusk, V., Zhang, X., & McIntire, W. S. (1998). Proposed steady-state kinetic mechanism for Corynebacterium ammoniagenes FAD synthetase produced by Escherichia coli. Biochemistry, 37, 9716–9723.

    Article  CAS  Google Scholar 

  69. Mavrovouniotis, M. L. (1990). Group contributions for estimating standard Gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnology and Bioengineering, 36, 1070–1082.

    Article  CAS  Google Scholar 

  70. Mavrovouniotis, M. L. (1991). Estimation of standard Gibbs energy changes of biotransformations. The Journal of Biological Chemistry, 266, 14,440–14,445.

    CAS  Google Scholar 

  71. Noor, E., Haraldsdóttir, H. S., Milo, R., & Fleming, R. M. T. (2013). Consistent estimation of Gibbs energy using component contributions. PLoS Computational Biology, 9, e1003098.

  72. Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D., Broadbelt, L. J., Hatzimanikatis, V., & Palsson, B. Ø. (2007). A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Molecular Systems Biology, 3, 121.

    Article  Google Scholar 

  73. Herz, S., Eberhardt, S., & Bacher, A. (2000). Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana specifies a bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase. Phytochemistry, 53, 723–731.

    Article  CAS  Google Scholar 

  74. Mironov, A. S., Gusarov, I., Rafikov, R., Lopez, L. E., Shatalin, K., Kreneva, R. A., Perumov, D. A., & Nudler, E. (2002). Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell, 111, 747–756.

    Article  CAS  Google Scholar 

  75. Winkler, W. C., Cohen-Chalamish, S., & Breaker, R. R. (2002). An mRNA structure that controls gene expression by binding FMN. Proceedings of the National Academy of Sciences USA, 99, 15,908–15,913.

  76. Haase, I., Gräwert, T., Illarionov, B., Bacher, A., & Fischer, M. (2014). Recent advances in riboflavin biosynthesis. In S. Weber, & E. Schleicher (Eds.), Methods in Molecular Biology, vol. 1146: Flavins and flavoproteins: methods and protocols (pp. 15–40). New York: Springer.

    Google Scholar 

  77. Marx, H., Mattanovich, D., & Sauer, M. (2008). Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris. Microbial Cell Factories, 7, 23.

    Article  Google Scholar 

  78. Sengupta, S., Kaufmann, A., & Chandra, T. S. (2012). Development of fluorescent reporter tagged RIB gene cassettes for replicative transformation, early expression, and enhanced riboflavin production in Eremothecium ashbyi. Fungal Biology, 116, 1042–1051.

    Article  CAS  Google Scholar 

  79. Wright, K. M., & Rausher, M. D. (2010). The evolution of control and distribution of adaptive mutations in a metabolic pathway. Genetics, 184, 483–502.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the German Federal Ministry of Education and Research (BMBF) in the context of the NANOKAT graduate program (ref. no. 0316052A). This study was inspired by interdisciplinary and open-minded discussions within the graduate program.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Röder.

Electronic supplementary material

ESM 1

(DOCX 883 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birkenmeier, M., Mack, M. & Röder, T. Thermodynamic and Probabilistic Metabolic Control Analysis of Riboflavin (Vitamin B2) Biosynthesis in Bacteria. Appl Biochem Biotechnol 177, 732–752 (2015). https://doi.org/10.1007/s12010-015-1776-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1776-y

Keywords

Navigation