Skip to main content
Log in

Immobilization of Acidithiobacillus ferrooxidans on Cotton Gauze for the Bioleaching of Waste Printed Circuit Boards

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The bioleaching parameters of metal concentrates from waste printed circuit boards by Acidithiobacillus ferrooxidans immobilized on cotton gauze in a two-step reactor were investigated in this study. The results indicated that an average ferrous iron oxidation rate of 0.54 g/(L·h) and a ferrous iron oxidation ratio of 96.90 % were obtained after 12 h at aeration rate of 1 L/min in bio-oxidation reactor. After 96 h, the highest leaching efficiency of copper reached 91.68 % under the conditions of the content of the metal powder 12 g/L, the retention time 6 h, and the aeration rate 1 L/min. The bioleaching efficiency of copper could be above 91.12 % under repeated continuous batch operation. Meanwhile, 95.32 % of zinc, 90.32 % of magnesium, 86.31 % of aluminum, and 59.07 % of nickel were extracted after 96 h. All the findings suggested that the recovery of metal concentrates from waste printed circuit boards via immobilization of A. ferrooxidans on cotton gauze was feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xiu, F. R., Qi, Y. Y., & Zhang, F. S. (2013). Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process. Waste Management, 33, 1251–1257.

    Article  CAS  Google Scholar 

  2. Vestola, E. A., Kuusenaho, M. K., Narhi, H. M., Tuovinen, O. H., Puhakka, J. A., Plumb, J. J., & Kaksonen, A. H. (2010). Acid bioleaching of solid waste materials from copper, steel and recycling industries. Hydrometallurgy, 103, 74–79.

    Article  CAS  Google Scholar 

  3. Erust, C., Akcil, A., Gahan, C. S., Tuncuk, A., & Deveci, H. (2013). Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery. Journal of Chemical Technology and Biotechnology, 88, 2115–2132.

    Article  Google Scholar 

  4. Zhou, Y. H., Wu, W. B., & Qiu, K. Q. (2011). Recycling of organic materials and solder from waste printed circuit boards by vacuum pyrolysis-centrifugation coupling technology. Waste Management, 31, 2569–2576.

    Article  CAS  Google Scholar 

  5. Pant, D., Joshi, D., Upreti, M. K., & Kotnala, R. K. (2012). Chemical and biological extraction of metals present in E waste: a hybrid technology. Waste Management, 32, 979–990.

    Article  CAS  Google Scholar 

  6. Brierley, J. A., & Brierley, C. L. (2001). Present and future commercial applications of biohydrometallurgy. Hydrometallurgy, 59, 233–239.

    Article  CAS  Google Scholar 

  7. Chen, S. Y., & Lin, J. G. (2009). Enhancement of metal bioleaching from contaminated sediment using silver ion. Journal of Hazardous Materials, 161, 893–899.

    Article  CAS  Google Scholar 

  8. Deng, X. H., Chai, L. Y., Yang, Z. H., Tang, C. J., Wang, Y. Y., & Shi, Y. (2013). Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1. Journal of Hazardous Materials, 248, 107–114.

    Article  Google Scholar 

  9. Liu, F. W., Zhou, L. X., Zhou, J., Song, X. W., & Wang, D. Z. (2012). Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH. Journal of Hazardous Materials, 221, 170–177.

    Article  Google Scholar 

  10. Seidel, H., Wennrich, R., Hoffmann, P., & Löser, C. (2006). Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments. Chemosphere, 62, 1444–1453.

    Article  CAS  Google Scholar 

  11. Wu, H. Y., & Ting, Y. P. (2006). Metal extraction from municipal solid waste (MSW) incinerator fly ash—chemical leaching and fungal bioleaching. Enzyme and Microbial Technology, 38, 839–847.

    Article  CAS  Google Scholar 

  12. Zeng, G. S., Luo, S. L., Deng, X. R., Li, L., & Au, C. (2013). Influence of silver ions on bioleaching of cobalt from spent lithium batteries. Minerals Engineering, 49, 40–44.

    Article  CAS  Google Scholar 

  13. Seidel, H., Goersch, K., & Schuemichen, A. (2006). Effect of oxygen limitation on solid-bed bioleaching of heavy metals from contaminated sediments. Chemosphere, 65, 102–109.

    Article  CAS  Google Scholar 

  14. Jaisankar, S., & Modak, J. M. (2009). Ferrous iron oxidation by foam immobilized Acidithiobacillus ferrooxidans: experiments and modeling. Biotechnology Progress, 25, 1328–1342.

    Article  CAS  Google Scholar 

  15. Yang, T., Xu, Z., Wen, J. K., & Yang, L. M. (2009). Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy, 97, 29–32.

    Article  CAS  Google Scholar 

  16. Liang, G. B., Mo, Y. W., & Zhou, Q. F. (2010). Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles. Enzyme and Microbial Technology, 47, 322–326.

    Article  CAS  Google Scholar 

  17. Wang, J. W., Bai, J., Xu, J. Q., & Liang, B. (2009). Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Journal of Hazardous Materials, 172, 1100–1105.

    Article  CAS  Google Scholar 

  18. Bayat, B., & Sari, B. (2010). Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. Journal of Hazardous Materials, 174, 763–769.

    Article  CAS  Google Scholar 

  19. Shah, M. B., Tipre, D. R., & Dave, S. R. (2014). Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones. Waste Management & Research, 32, 1134–1141.

    Article  CAS  Google Scholar 

  20. Lan, Z. Y., Li, D. F., & Zhang, Q. F. (2013). Electrochemical study on the bioleaching of marmatite. Advanced Materials Research, 774-776, 512–518.

    Article  CAS  Google Scholar 

  21. Xia, L. X., Liu, X. X., Zeng, J., Yin, C., Gao, J., Liu, J. S., & Qu, G. Z. (2008). Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferrooxidans after adaptation with chalcopyrite. Hydrometallurgy, 92, 95–101.

    Article  CAS  Google Scholar 

  22. Glaveno, A., Lavalle, L., Gulbal, E., & Donati, E. (2008). Biological ferrous sulfate oxidation by A. ferrooxidans immobilized on chitosan beads. Journal of Microbiological Methods, 72, 227–234.

    Article  Google Scholar 

  23. Gomez, J. M., Cantero, D., & Webb, C. (2000). Immobilisation of Thiobacillus ferrooxidans cells on nickel alloy fibre for ferrous sulfate oxidation. Applied Microbiology and Biotechnology, 54, 335–340.

    Article  CAS  Google Scholar 

  24. Cassano, R., Trombino, S., Ferrarelli, T., Muzzalupo, R., Tavano, L., & Picci, N. (2009). Synthesis and antibacterial activity evaluation of a novel cotton fiber (Gossypium barbadense) ampicillin derivative. Carbohydrate Polymers, 78, 639–641.

    Article  CAS  Google Scholar 

  25. Xu Z.G. (2014). Study on the bioleaching of metal concentrates of waste printed circuit boards in the bioreactor system [D]. College of Environment and Energy, South China University of Technology.

  26. Zhang, L., Qiu, G. Z., Hu, Y. H., Sun, X. J., Li, J. H., & Gu, G. H. (2008). Bioleaching of pyrite by A. ferrooxidans and L. ferriphilum. Transactions of Nonferrous Metals Society of China, 18, 1415–1420.

    Article  CAS  Google Scholar 

  27. Gleisner, M., Herbert, R. B., & Kockum, P. C. F. (2006). Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen. Chemical Geology, 225, 16–29.

    Article  CAS  Google Scholar 

  28. Ginsburg, M. A., & Karamanev, D. (2007). Experimental study of the immobilization of Acidithiobacillus ferrooxidans on carbon based supports. Biochemical Engineering Journal, 36, 294–300.

    Article  CAS  Google Scholar 

  29. Koseoglu-Imer, D. Y., & Keskinler, B. (2013). Immobilization of Acidithiobacillus ferrooxidans on sulfonated microporous poly(styrene-divinylbenzene) copolymer with granulated activated carbon and its use in bio-oxidation of ferrous iron. Materials Science & Engineering, C: Materials for Biological Applications, 33, 53–58.

    Article  CAS  Google Scholar 

  30. Wang, Y. J., Yang, X. J., Tu, W., & Li, H. Y. (2007). High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate. Journal of Microbiological Methods, 68, 212–217.

    Article  CAS  Google Scholar 

  31. Bastias, M., & Gentina, J. C. (2010). Variables affecting the growth and ferrous oxidation capacity of L. Ferrooxidans in continuous culture. Hydrometallurgy, 104, 351–355.

    Article  CAS  Google Scholar 

  32. Thurston, R. S., Mandernack, K. W., & Shanks III, W. C. (2010). Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: oxygen and sulfur isotope fractionation. Chemical Geology, 269, 252–261.

    Article  CAS  Google Scholar 

  33. Mousavi, S. M., Yaghmaei, S., & Jafari, A. (2007). Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part II: bioreactor experiments. Fuel, 86, 993–999.

    Article  CAS  Google Scholar 

  34. Long, Z. E., Huang, Y. H., Cai, Z. L., Wei, C., & Fan, O. Y. (2004). Kinetics of continuous ferrous ion oxidation by Acidithiobacillus ferrooxidans immobilized in poly(vinyl alcohol) cryogel carriers. Hydrometallurgy, 74, 181–187.

    Article  CAS  Google Scholar 

  35. Giro, M. E. A., Garcia, O., & Zaiat, M. (2006). Immobilized cells of Acidithiobacillus ferrooxidans in PVC strands and sulfite removal in a pilot-scale bioreactor. Biochemical Engineering Journal, 28, 201–207.

    Article  CAS  Google Scholar 

  36. Pogliani, C., & Donati, E. (2000). Immobilisation of Thiobacillus ferrooxidans: importance of jarosite precipitation. Process Biochemistry, 35, 997–1004.

    Article  CAS  Google Scholar 

  37. Zhu, J. Y., Gan, M., Zhang, D., Hu, Y. H., & Chai, L. Y. (2013). The nature of Schwertmannite and Jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability. Materials Science & Engineering, C: Materials for Biological Applications, 33, 2679–2685.

    Article  CAS  Google Scholar 

  38. Wang, Y. J., Yang, X. J., Li, H. Y., & Tu, W. (2006). Immobilization of Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate. Polymer Degradation and Stability, 91, 2408–2414.

    Article  CAS  Google Scholar 

  39. Long, Z. E., Huang, Y. H., Cai, Z. L., Cong, W., & Fan, O. Y. (2003). Biooxidation of ferrous iron by immobilized Acidithiobacillus ferrooxidans in poly(vinyl alcohol) cryogel carriers. Biotechnology Letters, 25, 245–249.

    Article  CAS  Google Scholar 

  40. Long, Z., Huang, Y. H., Cai, Z. L., Cong, W., & Ouyang, F. (2004). Immobilization of Acidithiobacillus ferrooxidans by a PVA-boric acid method for ferrous sulphate oxidation. Process Biochemistry, 39, 2129–2133.

    Article  CAS  Google Scholar 

  41. Carranza, F., & Garcia, M. J. (1990). Kinetic comparison of support materials in the bacterial ferrous iron oxidation in packed-bed columns. Biorecovery, 2, 15–27.

    CAS  Google Scholar 

  42. Wang, M., & Zhou, L. X. (2012). Simultaneous oxidation and precipitation of iron using jarosite immobilized Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Hydrometallurgy, 125–126, 152–156.

    Article  Google Scholar 

  43. Nie, H. Y., Yang, C., Zhu, N. W., Wu, P. X., Zhang, T., Zhang, Y. Q., & Xing, Y. J. (2015). Isolation of Acidithiobacillus ferrooxidans strain Z1 and its mechanism of bioleaching copper from waste printed circuit boards. Journal of Chemical Technology and Biotechnology, 90, 714–721.

    Article  CAS  Google Scholar 

  44. Ebrahimi, S., Morales, F. J. F., Kleerebezem, R., Heijnen, J. J., & van Loosdrecht, M. C. M. (2005). High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material. Biotechnology and Bioengineering, 90, 462–472.

    Article  CAS  Google Scholar 

  45. Wang, M., & Zhou, L. X. (2012). Simultaneous oxidation and precipitation of iron using jarosite immobilized Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Hydrometallurgy, 125, 152–156.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (51178191) and Program for New Century Excellent Talents in University (NCET-11-0166) for financial support.

Ethical Statement

I certify that this manuscript is original and has not been submitted to more than one journal for simultaneous consideration. The manuscript has not been published previously (partly or in full). The study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time. No data have been fabricated or manipulated (including images) to support my conclusions. No data, text, or theories by others are presented as if they were our own. Consent to submit has been received explicitly from all authors. Authors whose names appear on the submission have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nengwu Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, H., Zhu, N., Cao, Y. et al. Immobilization of Acidithiobacillus ferrooxidans on Cotton Gauze for the Bioleaching of Waste Printed Circuit Boards. Appl Biochem Biotechnol 177, 675–688 (2015). https://doi.org/10.1007/s12010-015-1772-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1772-2

Keywords

Navigation