Skip to main content

Advertisement

Log in

Efficient Surface Display of Diisopropylfluorophosphatase (DFPase) in E. coli for Biodegradation of Toxic Organophosphorus Compounds (DFP and Cp)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Compounds including organophosphorus pesticides (OPs) and chemical nerve agents are toxic compounds synthesized recently which disrupt the mechanisms of neural transmission. Therefore, a critical requirement is the development of a bio-refining technology to facilitate the biodegradation of organophosphorus pollutants. The diisopropylfluorophosphatase (DFPase, EC 3.1.8.2) from the ganglion and brain of Loligo vulgaris acts on P–F bonds present in some OPs. Intracellular production of OPs-degrading enzymes or the use of native bacteria and fungi leads to a low degradation rate of OPs due to a mass transfer issue which reduces the overall catalytic efficiency. To overcome this challenge, we expressed DFPase on the surface of E. coli for the first time by employing the N-terminal domain of the ice nucleation protein (InaV-N) as an anchoring motif. Tracking the recombinant protein confirmed that DFPase is successfully located on the outer membrane. Further studies on its activity to degrade diisopropylfluorophosphate (DFP) showed its significant ability for the biodegradation of diisopropylfluorophosphate (DFP) with a specific activity of 500 U/mg of wet cell weight. Recombinant cells could also degrade chlorpyrifos (Cp) with an activity equivalent to a maximum value of 381.44 U/ml with a specific activity of 476.75 U/mg of cell, analyzed using HPLC technique. The optimum activity of purified DFPase was found at 30 °C. A more increased activity was also obtained in the presence of glucose-mineral-salt (GMS) supplemented with tryptone and 100 mg/L Co2+ ion. These results highlight the high potential of the InaV-N anchoring domain to produce an engineered bacterium that can be used in the bioremediation of pesticide-contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balali-Mood, M., & Saber, H. (2012). Recent advances in the treatment of organophosphorous poisonings. Iranian Journal of Medical Sciences, 37, 74–91.

    Google Scholar 

  2. Bigley, A. N., & Raushel, F. M. (2013). Catalytic mechanisms for phosphotriesterases. Biochimica et Biophysica Acta, 1834, 443–453.

    Article  CAS  Google Scholar 

  3. Bisswanger, H. (2004) Enzyme reactions. In (Ed.), Practical enzymology.

  4. Cheng, T. C. and DeFrank, J. J. (1999) Enzymatic detoxification of organophopshorus commpounds.

  5. Cheng, T. C., Harvey, S. P., & Stroup, A. N. (1993). Purification and properties of a highly active organophosphorus acid anhydrolase from alteromonas undina. Applied and Environmental Microbiology, 59, 3138–3140.

    CAS  Google Scholar 

  6. Chernyshev, A. V., Tarasov, P. A., Semianov, K. A., Nekrasov, V. M., Hoekstra, A. G., & Maltsev, V. P. (2008). Erythrocyte lysis in isotonic solution of ammonium chloride: theoretical modeling and experimental verification. Journal of Theoretical Biology, 251, 93–107.

    Article  CAS  Google Scholar 

  7. Colovic, M., Krstic, D., Petrovic, S., Leskovac, A., Joksic, G., Savic, J., Franko, M., Trebse, P., & Vasic, V. (2010). Toxic effects of diazinon and its photodegradation products. Toxicology Letters, 193, 9–18.

    Article  CAS  Google Scholar 

  8. Danielsen, S., Skov, L. K., Leite, R., Laize, V. and Da Fonseca, M. L. C. (2010) DFPase enzymes from octopus vulgaris.

  9. DeFrank, J. J., & Cheng, T. C. (1991). Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate. Journal of Bacteriology, 173, 1938–1943.

    CAS  Google Scholar 

  10. Elias, M., Liebschner, D., Koepke, J., Lecomte, C., Guillot, B., Jelsch, C., & Chabriere, E. (2013). Hydrogen atoms in protein structures: high-resolution X-ray diffraction structure of the DFPase. BMC Research Notes, 6, 308.

    Article  CAS  Google Scholar 

  11. Gab, J., Melzer, M., Kehe, K., Richardt, A., & Blum, M. M. (2009). Quantification of hydrolysis of toxic organophosphates and organophosphonates by diisopropyl fluorophosphatase from Loligo vulgaris by in situ fourier transform infrared spectroscopy. Analytical Biochemistry, 385, 187–193.

    Article  Google Scholar 

  12. Gab, J., Melzer, M., Kehe, K., Wellert, S., Hellweg, T., & Blum, M. M. (2010). Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with (1)H- (31)P HSQC NMR spectroscopy. Analytical and Bioanalytical Chemistry, 396, 1213–1221.

    Article  Google Scholar 

  13. Gheybi, E., Amani, J., Salmanian, A. H., Mashayekhi, F., & Khodi, S. (2014). Designing a recombinant chimeric construct contain MUC1 and HER2 extracellular domain for prediagnostic breast cancer. Tumor Biology, 35, 11489–11497.

    Article  CAS  Google Scholar 

  14. Gianessi, L. P. (2013). The increasing importance of herbicides in worldwide crop production. Pest Management Science, 69, 1099–1105.

    Article  CAS  Google Scholar 

  15. Han, D., Filocamo, S., Kirby, R., & Steckl, A. (2011). Deactivating chemical agents using enzyme-coated nanofibers formed by electrospinning. ACS Applied Materials & Interfaces, 3, 4633–4639.

    Article  CAS  Google Scholar 

  16. Hartleib, J., & Ruterjans, H. (2001). Insights into the reaction mechanism of the diisopropyl fluorophosphatase from loligo vulgaris by means of kinetic studies, chemical modification and site-directed mutagenesis. Biochimica et Biophysica Acta, 1546, 312–324.

    Article  CAS  Google Scholar 

  17. Huang, Z., Ma, L., Liu, W., & Cheng, Y. (1999). Isotachophoresis analysis of hydrolytic products of DFP catalyzed by DFPase in porcine liver. Se Pu, 17, 196–198.

    CAS  Google Scholar 

  18. Kang, D. G., Li, L., Ha, J. H., Choi, S. S., & Cha, H. J. (2008). Efficient cell surface display of organophosphorus hydrolase using N-terminal domain of ice nucleation protein in Escherichia coli. Korean Journal of Chemistry and Engineering, 25, 804–807.

    Article  CAS  Google Scholar 

  19. Karami, A., Latifi, A. M., & Khodi, S. (2014). Comparison of the organophosphorus hydrolase surface display using InaVN and Lpp-OmpA systems in Escherichia coli. Journal of Microbiology and Biotechnology, 24, 379–385.

    Article  CAS  Google Scholar 

  20. Khodi, S., Latifi, A. M., Saadati, M., Mirzaei, M., & Aghamollaei, H. (2012). Surface display of organophosphorus hydrolase on E. coli using N-terminal domain of ice nucleation protein InaV. Journal of Microbiology and Biotechnology, 22, 234–238.

    Article  CAS  Google Scholar 

  21. Kwak, Y. D., Yoo, S. K., & Kim, E. J. (1999). Cell surface display of human immunodeficiency virus type 1 gp120 on Escherichia coli by using ice nucleation protein. Clinical and Diagnostic Laboratory Immunology, 6, 499–503.

    CAS  Google Scholar 

  22. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  23. Latifi, A. M., Khodi, S., Mirzaei, M., Miresmaeili, M., & Babavalian, H. (2012). Isolation and characterization of five chlorpyrifos degrading bacteria. African Journal of Biotechnology, 11, 3140–3146.

    CAS  Google Scholar 

  24. Lee, S. Y., Choi, J. H., & Xu, Z. H. (2003). Microbial cell-surface display. Trends in Biotechnology, 21, 45–52.

    Article  CAS  Google Scholar 

  25. Mierendorf, R. C., Morris, B. B., Hammer, B., & Novy, R. E. (1998). Expression and purification of recombinant proteins using the pET system. Methods in Molecular Medicine, 13, 257–292.

    CAS  Google Scholar 

  26. Palaiomylitou, M. A., Kalimanis, A., Koukkou, A. I., Drainas, C., Anastassopoulos, E., Panopoulos, N. J., Ekateriniadou, L. V., & Kyriakidis, D. A. (1998). Phospholipid analysis and fractional reconstitution of the ice nucleation protein activity purified from Escherichia coli overexpressing the inaZ gene of Pseudomonas syringae. Cryobiology, 37, 67–76.

    Article  CAS  Google Scholar 

  27. Razavi, S. M., Salamati, P., Saghafinia, M., & Abdollahi, M. (2012). A review on delayed toxic effects of sulfur mustard in Iranian veterans. Daru, 20.

  28. Richardt, A. and Blum, M. M. (2008) Decontamination of warfare agents: enzymatic methods for the removal of B/C weapons.

  29. Rogers, J. H. T., Kenny, D., MacGregor, I., Tracy, K., Krile, R., Nishioka, M., Taylor, M., Riggs, K., Stone, H. (2009) Decontamination of toxic industrial chemicals and chemical warfare agents on building materials using chlorine dioxide fumigant and liquid oxidant technologies.

  30. Sarhan, M. A. A. (2011). Ice nucleation protein as a bacterial surface display protein. Archives of Biological Science Belgrade, 63, 943–948.

    Article  Google Scholar 

  31. Sepahi, A. A., Golpasha, I. D., Emami, M., & Nakhoda, A. (2008). Isolation and characterization of crude oil degrading Bacillus spp. Iranian Journal of Environmental Health Science & Engineering, 5, 149–154.

    Google Scholar 

  32. Shimazu, M., Mulchandani, A., & Chen, W. (2001). Cell surface display of organophosphorus hydrolase using ice nucleation protein. Biotechnology Progress, 17, 76–80.

    Article  CAS  Google Scholar 

  33. Singh, B. K., & Walker, A. (2006). Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews, 30, 428–471.

    Article  CAS  Google Scholar 

  34. Stehle, R., Schulreich, C., Wellert, S., Gab, J., Blum, M. M., Kehe, K., Richardt, A., Lapp, A., & Hellweg, T. (2014). An enzyme containing microemulsion based on skin friendly oil and surfactant as decontamination medium for organo phosphates: phase behavior, structure, and enzyme activity. Journal of Colloid and Interface Science, 413, 127–132.

    Article  CAS  Google Scholar 

  35. Tang, X., Liang, B., Yi, T., Manco, G., Palchetti, I., & Liu, A. (2014). Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates. Enzyme and Microbial Technology, 55, 107–112.

    Article  CAS  Google Scholar 

  36. Theriot, C. M., & Grunden, A. M. (2011). Hydrolysis of organophosphorus compounds by microbial enzymes. Applied Microbiology and Biotechnology, 89, 35–43.

    Article  CAS  Google Scholar 

  37. van Alphen, L., Riemens, T., Poolman, J., & Zanen, H. C. (1983). Characteristics of major outer membrane proteins of Haemophilus influenzae. Journal of Bacteriology, 155, 878–885.

    Google Scholar 

  38. Wille, T., Scott, C., Thiermann, H., & Worek, F. (2012). Detoxification of G- and V-series nerve agents by the phosphotriesterase OpdA. Biocatalysis and Biotransformation, 30, 203–208.

    Article  CAS  Google Scholar 

  39. Wymore, T., Field, M. J., Langan, P., Smith, J. C., & Parks, J. M. (2014). Hydrolysis of DFP and the nerve agent (S)-sarin by DFPase proceeds along two different reaction pathways: implications for engineering bioscavengers. The Journal of Physical Chemistry. B, 118, 4479–4489.

    Article  CAS  Google Scholar 

  40. Xie, J., Zhao, Y., Zhang, H., Liu, Z., & Lu, Z. (2014). Improving methyl parathion hydrolase to enhance its chlorpyrifos-hydrolysing efficiency. Letters in Applied Microbiology, 58, 53–59.

    Article  CAS  Google Scholar 

  41. Xu, Y., Liu, Q., Zhou, L., Yang, Z., & Zhang, Y. (2008). Surface display of GFP by Pseudomonas syringae truncated ice nucleation protein in attenuated vibrio anguillarum strain. Marine Biotechnology, 10, 701–708.

    Article  CAS  Google Scholar 

  42. Yang, C., Cai, N., Dong, M., Jiang, H., Li, J., Qiao, C., Mulchandani, A., & Chen, W. (2008). Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates. Biotechnology and Bioengineering, 99, 30–37.

    Article  CAS  Google Scholar 

  43. Yang, C., Zhao, Q., Liu, Z., Li, Q., Qiao, C., Mulchandani, A., & Chen, W. (2008). Cell surface display of functional macromolecule fusions on Escherichia coli for development of an autofluorescent whole-cell biocatalyst. Environmental Science and Technology, 42, 6105–6110.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all colleagues in the Applied Biotechnology Research Center of Baqiyatallah Medical Sciences University, Analytical Chemistry and Biology departments, for their kind contribution to the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaneh Khodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latifi, A.M., Karami, A. & Khodi, S. Efficient Surface Display of Diisopropylfluorophosphatase (DFPase) in E. coli for Biodegradation of Toxic Organophosphorus Compounds (DFP and Cp) . Appl Biochem Biotechnol 177, 624–636 (2015). https://doi.org/10.1007/s12010-015-1766-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1766-0

Keywords

Navigation