Skip to main content
Log in

Covalent Immobilization of Catalase onto Regenerated Silk Fibroins via Tyrosinase-Catalyzed Cross-Linking

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Regenerated silk fibroins could be used as medical scaffolds and carrier materials for enzyme immobilization. In the present work, tyrosinase enzyme was used for enzymatic oxidation of silk fibroins, followed by immobilization of catalase onto the fibroin surfaces through physical adsorption and covalent cross-linking as well. Spectrophotometry, SDS-PAGE, and Fourier transform infrared spectroscopy (FTIR) were used to examine the efficiency of enzymatic oxidation and catalase immobilization, respectively. The results indicate that tyrosine residues in silk fibroins could be oxidized and converted to the active o-quinones. Incubating silk fibroins with catalase and tyrosinase led to a noticeable change of molecular weight distribution, indicating the occurrence of the cross-links between silk fibroins and catalase molecules. Two different pathways were proposed for the catalase immobilizations, and the method based on grafting of catalase onto the freeze-dried fibroin membrane is more acceptable. The residual enzyme activity for the immobilized catalase exhibited higher than that of the control after repeated washing cycles. Meanwhile, the thermal stability and alkali resistance were also slightly improved as compared to free catalase. The mechanisms of enzymatic immobilization are also concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sooch, B. S., Kauldhar, B. S., & Puri, M. (2014). Recent insights into microbial catalases: Isolation, production and purification. Biotechnology Advances, 32, 1429–1447.

    Article  CAS  Google Scholar 

  2. Furuta, S., & Hayashi, H. (1990). Purification and properties of recombinant rat catalase produced in Escherichia coli. Journal of Biochemistry, 107, 708–713.

    CAS  Google Scholar 

  3. Alptekin, Ö., Tükel, S. S., Yildirim, D., & Alagöz, D. (2011). Covalent immobilization of catalase onto spacer-arm attached modified florisil: characterization and application to batch and plug-flow type reactor systems. Enzyme and Microbial Technology, 49, 547–554.

    Article  CAS  Google Scholar 

  4. Ai, Q. H., Yang, D., Li, Y. B., Shi, J. F., Wang, X. L., & Jiang, Z. Y. (2014). Highly efficient covalent immobilization of catalase on titanate nanotubes. Biochemical Engineering Journal, 83, 8–15.

    Article  CAS  Google Scholar 

  5. Cengiz, S., Çavaş, L., & Yurdakoç, K. (2012). Bentonite and sepiolite as supporting media: Immobilization of catalase. Applied Clay Science, 65–66, 114–120.

    Article  Google Scholar 

  6. Çetinus, S. A., Şahin, E., & Saraydin, D. (2009). Preparation of Cu(II) adsorbed chitosan beads for catalase immobilization. Food Chemistry, 114, 962–969.

    Article  Google Scholar 

  7. Song, N., Chen, S., Huang, X., Liao, X. P., & Shi, B. (2011). Immobilization of catalase by using Zr(IV)-modified collagen fiber as the supporting matrix. Process Biochemistry, 46, 2187–2193.

    Article  CAS  Google Scholar 

  8. Mubarak, N. M., Wong, J. R., Tan, K. W., Sahu, J. N., Abdullah, E. C., Jayakumar, N. S., & Ganesan, P. (2014). Immobilization of cellulase enzyme on functionalized multiwallcarbon nanotubes. Journal of Molecular Catalysis B-Enzymatic, 107, 124–131.

    Article  CAS  Google Scholar 

  9. Carrascoza, M. J. F., Lupan, A., Cosar, C., Kun, A. Z., & Silaghi-Dumitrescu, R. (2015). On the roles of the alanine and serine in the β-sheet structure of fibroin. Biophysical Chemistry, 197, 10–17.

    Article  Google Scholar 

  10. Kim, U. J., Park, J., Kim, H. J., Wada, M., & Kaplan, D. L. (2005). Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials, 26, 2775–2785.

    Article  CAS  Google Scholar 

  11. Zhang, Q., Yan, S. Q., & Li, M. Z. (2009). Silk fibroin based porous materials. Materials, 2, 2276–2295.

    Article  CAS  Google Scholar 

  12. Kundu, B., Rajkhowa, R., Kundu, S. C., & Wang, X. G. (2013). Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews, 65, 457–470.

    Article  CAS  Google Scholar 

  13. Xin, K., Wu, P. Y., Li, R. T., Wei, J., Sha, H. Z., Zhang, Y. J., Jiang, X. Q., Huang, Y., Yu, L. X., & Liu, B. R. (2015). Facile preparation of a novel mulberry silk fibroin scaffold for three-dimensional tumor cell culture. Materials Letters, 143, 8–11.

    Article  CAS  Google Scholar 

  14. Cilurzo, F., Gennari, C. G., Selmin, F., Marotta, L. A., Minghetti, P., & Montanari, L. (2011). An investigation into silk fibroin conformation in composite materials intended for drug delivery. International Journal of Pharmaceutics, 414, 218–224.

    Article  CAS  Google Scholar 

  15. Zhang, Y. Q. (1998). Natural silk fibroin as a support for enzyme immobilization. Biotechnology Advances, 16, 961–971.

    Article  CAS  Google Scholar 

  16. Wang, P., Yu, M. L., Cui, L., Yuan, J. G., Wang, Q., & Fan, X. R. (2014). Modification of Bombyx mori silk fabrics by tyrosinase-catalyzed grafting of chitosan. Engineering in Life Sciences, 14, 211–217.

    Article  Google Scholar 

  17. Anghileri, A., Lantto, R., Kruus, K., Arosio, C., & Freddi, G. (2007). Tyrosinase-catalyzed grafting of sericin peptides onto chitosan and production of protein-polysaccharide bioconjugates. Journal of Biotechnology, 127, 508–519.

    Article  CAS  Google Scholar 

  18. Ates, S., Cortenlioglu, E., Bayraktar, E., & Mehmetoglu, U. (2007). Production of l-DOPA using Cu-alginate gel immobilized tyrosinase in a batch and packed bed reactor. Enzyme and Microbial Technology, 40, 683–687.

    Article  CAS  Google Scholar 

  19. Bai, L. Q., Zhu, L. J., Min, S. J., Liu, L., Cai, Y. R., & Yao, J. M. (2008). Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide. Applied Surface Science, 254, 2988–2995.

    Article  CAS  Google Scholar 

  20. Kuboe, Y., Tonegawa, H., Ohkawa, K., & Yamamoto, H. (2004). Quinone cross-linked polysaccharide hybrid fiber. Biomacromolecules, 5, 348–357.

    Article  CAS  Google Scholar 

  21. Vasconcelos, A., Gomes, A. C., & Cavaco-Paulo, A. (2012). Novel silk fibroin/elastin wound dressings. Acta Biomaterialia, 8, 3049–3060.

    Article  CAS  Google Scholar 

  22. Aznar-Cervantes, S. D., Vicente-Cervantes, D., Meseguer-Olmo, L., Cenis, J. L., & Lozano-Pérez, A. A. (2013). Influence of the protocol used for fibroin extraction on the mechanical properties and fiber sizes of electrospun silk mats. Materials Science and Engineering: C, 33, 1945–1950.

    Article  CAS  Google Scholar 

  23. Mahlicli, Y. F., Şen, Y., Mutlu, M., & Altinkaya, S. A. (2015). Immobilization of superoxide dismutase/catalase onto polysulfone membranes to suppress hemodialysis-induced oxidative stress: a comparison of two immobilization methods. Journal of Membrane Science, 479, 175–189.

    Article  Google Scholar 

  24. Vasudevan, P. T., & Weiland, R. H. (1990). Deactivation of catalase by hydrogen peroxide. Biotechnology and Bioengineering, 36, 783–789.

    Article  CAS  Google Scholar 

  25. Kang, G. D., Lee, K. H., Ki, C. S., & Park, Y. H. (2004). Crosslinking reaction of phenolic side chains in silk fibroin by tyrosinase. Fibers and Polymers, 5, 234–238.

    Article  CAS  Google Scholar 

  26. Chen, X., Shao, Z. Z., Marinkovic, N. S., Miller, L. M., Zhou, P., & Chance, M. R. (2001). Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry, 89, 25–34.

    Article  CAS  Google Scholar 

  27. Krimm, S., & Bandekar, J. (1986). Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry, 28, 181–364.

    Article  Google Scholar 

  28. Sampaio, S., Taddei, P., Monti, P., Buchert, J., & Freddi, G. (2005). Enzymatic grafting of chitosan onto Bombyx mori silk fibroin:kinetic and IR vibrational studies. Journal of Biotechnology, 116, 21–33.

    Article  CAS  Google Scholar 

  29. Yi, P. G., Yu, Q. S., Hu, X. G., Shang, Z. C., Mei, M. H., & Lin, R. S. (2008). Activity and conformation of catalase in water-ethanol mixtures. Acta Chimica Sinica, 58, 652–655.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Funds (51373071), Program for New Century Excellent Talents in University (NCET-12-0883), and the Fundamental Research Funds for the Central Universities (JUSRP51312B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Qi, C., Yu, Y. et al. Covalent Immobilization of Catalase onto Regenerated Silk Fibroins via Tyrosinase-Catalyzed Cross-Linking. Appl Biochem Biotechnol 177, 472–485 (2015). https://doi.org/10.1007/s12010-015-1756-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1756-2

Keywords

Navigation