Skip to main content

Advertisement

Log in

Effect of Light Intensity and Photoperiod on Growth and Biochemical Composition of a Local Isolate of Nostoc calcicola

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A study was conducted to investigate the effect of light intensity (21, 42, and 63 μmol photons m−2 s−1) and photoperiod (8:16, 12:12, and 16:8 h light/dark) on the biomass production and its biochemical composition (total carotenoids, chlorophyll a, phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC), total protein, and carbohydrates) of a local isolate of Nostoc calcicola. The results revealed that N. calcicola prefers dim light; however, the most of the levels of light intensity and photoperiod investigated did not have a significant impact on biomass production. Increasing light intensity biomass content of chlorophyll a, PE, PC, APC, and total protein decreased, while total carotenoids and carbohydrate increased. The same behavior was observed also when light duration (photoperiod) increased. The interaction effect of increasing light intensity and photoperiod resulted in an increase of carbohydrate and total carotenoids, and to the decrease of chlorophyll a, PE, PC, APC, and total protein content. The results indicate that varying the light regime, it is capable to manipulate the biochemical composition of the local isolate of N. calcicola, producing either valuable phycobiliproteins or proteins under low light intensity and shorter photoperiods, or producing carbohydrates and carotenoids under higher light intensities and longer photoperiods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Knoll, A. H. (2008). Cyanobacteria and earth history. The Cyanobacteria: Molecular Biology, Genomics, and Evolution, 484

  2. Rastogi, R. P., & Sinha, R. P. (2009). Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnology Advances, 27, 521–539.

    Article  CAS  Google Scholar 

  3. Singh, R. K., Tiwari, S. P., Rai, A. K., & Mohapatra, T. M. (2011). Cyanobacteria: an emerging source for drug discovery. The Journal of Antibiotics, 64, 401–412.

    Article  CAS  Google Scholar 

  4. Balat, H. (2010). Prospects of biofuels for a sustainable energy future: a critical assessment. Energy Education Science and Technology Part a-Energy Science and Research, 24, 85–111.

    Google Scholar 

  5. Groom, M. J., Gray, E. M., & Townsend, P. A. (2008). Biofuels and biodiversity: principles for creating better policies for biofuel production. Conservation Biology, 22, 602–609.

    Article  Google Scholar 

  6. Renaud, S., Parry, D., Thinh, L.-V., Kuo, C., Padovan, A., & Sammy, N. (1991). Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. Journal of Applied Phycology, 3, 43–53.

    Article  CAS  Google Scholar 

  7. Meseck, S. L., Alix, J. H., & Wikfors, G. H. (2005). Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga, Tetraselmis chui (PLY429). Aquaculture, 246, 393–404.

    Article  Google Scholar 

  8. Danesi, E. D. G., Rangel-Yagui, C. O., Carvalho, J. C. M., & Sato, S. (2004). Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass and Bioenergy, 26, 329–335.

    Article  CAS  Google Scholar 

  9. Khotimchenko, S. V., & Yakovleva, I. M. (2005). Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry, 66, 73–79.

    Article  CAS  Google Scholar 

  10. Jeon, Y.-C., Cho, C.-W., & Yun, Y.-S. (2006). Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme and Microbial Technology, 39, 490–495.

    Article  CAS  Google Scholar 

  11. Brown, M. R., & Hohmann, S. (2002). Effects of irradiance and growth phase on the ascorbic acid content of Isochrysis sp. T. ISO (Prymnesiophyta). Journal of Applied Phycology, 14, 211–214.

    Article  CAS  Google Scholar 

  12. Bouterfas, R., Belkoura, M., & Dauta, A. (2006). The effects of irradiance and photoperiod on the growth rate of three freshwater green algae isolated from a eutrophic lake. Limnetica, 25, 647–656.

    Google Scholar 

  13. Hashtroudi, M. S., Shariatmadari, Z., Riahi, H., & Ghassempour, A. (2013). Analysis of Anabaena vaginicola and Nostoc calcicola from Northern Iran, as rich sources of major carotenoids. Food Chemistry, 136, 1148–1153.

    Article  CAS  Google Scholar 

  14. Komárek, J. (2010). Modern taxonomic revision of planktic nostocacean cyanobacteria: a short review of genera. Hydrobiologia, 639, 231–243.

    Article  Google Scholar 

  15. Zehnder, A., & Gorham, P. R. (1960). Factors influencing the growth of Microcystis aeruginosa Kütz Emend. Elenkin. Canadian Journal of Microbiol, 6, 645–660.

    Article  CAS  Google Scholar 

  16. Premila, V., & Umamaheswara Rao, M. (1997). Effect of crude oil on the growth and reproduction of some benthic marine algae of Visakhapatnam coastline. Indian Journal of Marine Science, 26, 195–200.

    Google Scholar 

  17. Aminot, A. and Rey, F. (2000). Standard procedure for the determination of chlorophyll a by spectroscopic methods. International Council for the Exploration of the Sea, 1–12.

  18. Wyman, M., & Fay, P. (1986). Underwater light climate and the growth and pigmentation of planktonic blue-green algae (Cyanobacteria) I. The influence of light quantity. Proceedings of the Royal Society of London B. Biological Sciences, 227, 367–380.

    Article  Google Scholar 

  19. Bogorad, L. (1975). Phycobiliproteins and complementary chromatic adaptation. Annual Review of Plant Physiology, 26, 369–401.

    Article  CAS  Google Scholar 

  20. Gerhardt, P., Wood, W. A. and Krieg, N. R. (1994). Methods for general and molecular bacteriology.ed. American Society for Microbiology Washington, DC.

  21. Schneegurt, M. A., Sherman, D. M., Nayar, S., & Sherman, L. A. (1994). Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. Journal of Bacteriology, 176, 1586–1597.

    CAS  Google Scholar 

  22. Meijer, E., & Wijffels, R. (1998). Development of a fast, reproducible and effective method for the extraction and quantification of proteins of micro-algae. Biotechnology Techniques, 12, 353–358.

    Article  CAS  Google Scholar 

  23. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  24. Hu, Q. (2004). in Handbook of microalgal culture: biotechnology and applied phycology, (Richmond, A., ed.), Blackwell Publishing Ltd, Oxford.

  25. De Nobel, W. P., Matthijs, H. C., Von Elert, E., & Mur, L. R. (1998). Comparison of the light‐limited growth of the nitrogen‐fixing cyanobacteria Anabaena and Aphanizomenon. New Phytologist, 138, 579–587.

    Article  Google Scholar 

  26. Grobbelaar, J. U. (2004). in Handbook of microalgal culture: Biotechnology and applied phycology, (Richmond, A., ed.), Blackwell Publishing Ltd., Oxford, pp. 97–115.

  27. Sánchez-Saavedra, M. (2002). Effect of photon fluence rates of white and blue-green light on growth efficiency and pigment content of three diatom species in batch cultures Efecto de las tasas de flujo de fotones de luz blanca y azul-verde cn la eficiencia del crecimiento y contenido de pigmentos de tres especies de diatomcas en cultivos temrinales. Ciencias do Mar, 28, 273–279.

    Google Scholar 

  28. Richmond, A. (2004). Biological principles of mass cultivation. Handbook of microalgal culture: Biotechnology and applied phycology, 125–177

  29. Ak, I., Cirik, S. and Göksan, T. (2008). Effects of Light Intensity, Salinity and Temperature on Growth in Çamaltı Strain of Dunaliella viridis Teodoresco from Turkey. Journal of Biological Sciences, 8

  30. Poza-Carrión, C., Fernández-Valiente, E., Piñas, F. F., & Leganés, F. (2001). Acclimation of photosynthetic pigments and photosynthesis of the cyanobacterium Nostoc sp. strain UAM206 to combined fluctuations of irradiance, pH, and inorganic carbon availability. Journal of Plant Physiology, 158, 1455–1461.

    Article  Google Scholar 

  31. Post, A. F., de Wit, R., & Mur, L. R. (1985). Interactions between temperature and light intensity on growth and photosynthesis of the cyanobacterium Oscillatoria agardhii. Journal of Plankton Research, 7, 487–495.

    Article  Google Scholar 

  32. Vernotte, C., Astier, C., & Olive, J. (1990). State 1-state 2 adaptation in the cyanobacteria Synechocystis PCC 6714 wild type and Synechocystis PCC 6803 wild type and phycocyanin-less mutant. Photosynthesis Research, 26, 203–212.

    Article  CAS  Google Scholar 

  33. Kim, J. H., Nemson, J. A., & Melis, A. (1993). Photosystem II reaction center damage and repair in Dunaliella salina (green alga) (analysis under physiological and irradiance-stress conditions). Plant Physiology, 103, 181–189.

    Article  CAS  Google Scholar 

  34. Sforza, E., Simionato, D., Giacometti, G. M., Bertucco, A., & Morosinotto, T. (2012). Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS ONE, 7, e38975.

    Article  CAS  Google Scholar 

  35. Zhu, C., Lee, Y., Chao, T., & Lim, S. (1997). Diurnal changes in gross chemical composition and fatty acid profiles of Isochrysis galbana TK1 in outdoor closed tubular photobioreactors. Journal of Marine Biotechnology, 5, 153–157.

    CAS  Google Scholar 

  36. Valenzuela-Espinoza, E., Millán-Núñez, R., & Núñez-Cebrero, F. (2002). Protein, carbohydrate, lipid and chlorophyll a content in Isochrysis aff. galbana (clone T-Iso) cultured with a low cost alternative to the f/2 medium. Aquacultural Engineering, 25, 207–216.

    Article  Google Scholar 

  37. Markou, G., Angelidaki, I., & Georgakakis, D. (2013). Bioethanol production by carbohydrate-enriched Arthrospira (Spirulina) platensis. Energies, 6, 3937–3950.

    Article  CAS  Google Scholar 

  38. Latasa, M. (1995). Pigment composition of Heterocapsa sp. and Thalassiosira weissflogii growing in batch cultures under different irradiances. Scientia Marina, 59, 25–37.

    Google Scholar 

  39. Sandnes, J., Källqvist, T., Wenner, D., & Gislerød, H. R. (2005). Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production. Journal of Applied Phycology, 17, 515–525.

    Article  Google Scholar 

  40. Ogbonda, K. H., Aminigo, R. E. and Abu, G. O. (2007). Influence of aeration and lighting on biomass production and protein biosynthesis in a Spirulina sp. isolated from an oil-polluted brackish water marsh in the Niger Delta, Nigeria. Afr. J. Biotechnol., 6

  41. Peña, M. R., & Villegas, C. T. (2005). Cell growth, effect of filtrate and nutritive value of the tropical Prasinophyte Tetraselmis tetrathele (Butcher) at different phases of culture. Aquaculture Research, 36, 1500–1508.

    Article  Google Scholar 

  42. Foy, R., & Gibson, C. (1982). Photosynthetic characteristics of planktonic blue-green algae: changes in photosynthetic capacity and pigmentation of Oscillatoria redekei Van Goor under high and low light. British Phycological Journal, 17, 183–193.

    Article  Google Scholar 

  43. Falkowski, P. G., & Owens, T. G. (1980). Light—shade adaptation: two strategies in marine phytoplankton. Plant Physiology, 66, 592–595.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fateme Khajepour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajepour, F., Hosseini, S.A., Ghorbani Nasrabadi, R. et al. Effect of Light Intensity and Photoperiod on Growth and Biochemical Composition of a Local Isolate of Nostoc calcicola . Appl Biochem Biotechnol 176, 2279–2289 (2015). https://doi.org/10.1007/s12010-015-1717-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1717-9

Keywords

Navigation