Skip to main content

Advertisement

Log in

IL-17A Autoantibody Induced by Recombinant Mycobacterium smegmatis Expressing Ag85A-IL-17A Fusion Protein

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Interleukin-17A is a newly described proinflammatory cytokine, which plays important roles in autoimmune diseases as well as asthma. In current work, we constructed a recombinant plasmid pMFA42S-Ag85a-IL-17a by inserting fusion gene Ag85a-IL-17a into shuttle vector pMFA42S, which was transformed to Mycobacterium smegmatis by electroporation to obtain recombinant M. smegmatis named rMS-Ag85a-IL-17a. The comparison of growth pattern between M. smegmatis and rMS-Ag85a-IL-17a suggested fusion gene had no significant influence on the growth of strains, and rMS-Ag85a-IL-17a expressed fusion protein Ag85A-IL-17A which had good immunogenicity revealed by Western blot. M. smegmatis and rMS-Ag85a-IL-17a were performed to intranasally immunize mice; then, antibody response in sera was detected by enzyme-linked immunosorbent assay. Our findings demonstrated that rMS-Ag85a-IL-17a could induce specific IL-17A autoantibody in mice, which laid the foundation for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Onishi, R. M., & Gaffen, S. L. (2010). Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology, 129, 311–321.

    Article  CAS  Google Scholar 

  2. Wang, Y. H., & Liu, Y. J. (2008). The IL-17 cytokine family and their role in allergic inflammation. Current Opinion in Immunology, 20, 697–702.

    Article  CAS  Google Scholar 

  3. van den Berg, W. B., & Mclnnes, I. B. (2013). Th17 cells and IL-17 a-focus on immunopathogenesis and immunotherapeutics. Seminars in Arthritis and Rheumatism, 43, 158–170.

    Article  Google Scholar 

  4. Pène, J., Chevalier, S., Preisser, L., Vénéreau, E., Guilleux, M. H., Ghannam, S., Molès, J. P., Danger, Y., Ravon, E., Lesaux, S., Yssel, H., & Gascan, H. (2008). Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. Journal of Immunology, 180, 7423–7430.

    Article  Google Scholar 

  5. Adcock, I. M., Caramori, G., & Chung, K. F. (2008). New targets for drug development in asthma. Lancet, 372, 1073–1087.

    Article  CAS  Google Scholar 

  6. Masoli, M., Fabian, D., Holt, S., & Beasley, R. (2004). The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy, 59, 469–478.

    Article  Google Scholar 

  7. Borish, L., & Culp, J. A. (2008). Asthma: a syndrome composed of heterogeneous diseases. Annals of Allergy, Asthma & Immunology, 101, 1–8.

    Article  CAS  Google Scholar 

  8. Busse, W. W., & Lemanske, R. F., Jr. (2001). Asthma. The New England Journal of Medicine, 344, 350–362.

    Article  CAS  Google Scholar 

  9. Holgate, S. T. (2008). Pathogenesis of asthma. Clinical Experimental Allergy, 38, 872–897.

    Article  CAS  Google Scholar 

  10. Boyce, J. A., Bochner, B., Finkelman, F. D., & Rothenberg, M. E. (2012). Advances in mechanisms of asthma, allergy, and immunology in 2011. The Journal of Allergy and Clinical Immunology, 129, 335–341.

    Article  Google Scholar 

  11. Lajoie, S., Lewkowich, I. P., Suzuki, Y., Clark, Y., Sproles, A. A., Dienger, K., Budelsky, A. L., & Wills-Karp, M. (2010). Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nature Immunology, 11, 928–935.

    Article  CAS  Google Scholar 

  12. Hellings, P. W., Kasran, A., Liu, Z., Vandekerckhove, P., Wuyts, A., Overbergh, L., Mathieu, C., & Ceuppens, J. L. (2003). Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. American Journal of Respiratory Cell and Molecular Biology, 28, 42–50.

    Article  CAS  Google Scholar 

  13. Agache, I., Ciobanu, C., Aganche, C., & Anghel, M. (2010). Increased serum IL-17 is an independent risk factor for severe asthma. Respiratory Medicine, 104, 1131–1137.

    Article  Google Scholar 

  14. Molet, S., Hamid, Q., Davoine, F., Nutku, E., Taha, R., Pagé, N., Olivenstein, R., Elias, J., & Chakir, J. (2001). IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. The Journal of Allergy and Clinical Immunology, 108, 430–438.

    Article  CAS  Google Scholar 

  15. Chien, J. W., Lin, C. Y., Yang, K. D., Lin, C. H., Kao, J. K., & Tsai, Y. G. (2013). Increased IL-17A secreting CD4+ T cells, serum IL-17 levels and exhaled nitric oxide are correlated with childhood asthma severity. Clinical and Experimental Allergy, 43, 1018–1026.

    Article  CAS  Google Scholar 

  16. Zhang, P., Wang, J., Wang, D., Shan, F., Chen, L., Hou, Y., Wang, E., & Lu, C. L. (2012). Dendritic cell vaccine modified by Ag85A gene enhances anti-tumor immunity against bladder cancer. International Immunopharmacology, 14, 252–260.

    Article  CAS  Google Scholar 

  17. Dai, J., Pei, D., Wang, B., Kuang, Y., Ren, L., Cao, K., Wang, H., Zou, B., Shao, J., Li, S., Li, H., & Li, M. (2012). Molecular adjuvant Ag85A enhances protection against influenza A virus in mice following DNA vaccination. Viruses, 4, 3606–3624.

    Article  CAS  Google Scholar 

  18. Tameris, M., Geldenhuys, H., Luabeya, A. K., Smit, E., Hughes, J. E., Vermaak, S., Hanekom, W. A., Hatherill, M., Mahomed, H., McShane, H., & Scriba, T. J. (2014). The candidate TB vaccine, MVA85A, induces highly durable Th1 responses. PloS One, 9, e87340.

    Article  Google Scholar 

  19. Pérez de Val, B., Villarreal-Ramos, B., Nofrarias, M., López-Soria, S., Romera, N., Singh, M., Abad, F. X., Xing, Z., Vordermeier, H. M., & Domingo, M. (2012). Goats primed with Mycobacterium bovis BCG and boosted with a recombinant adenovirus expressing Ag85A show enhanced protection against tuberculosis. Clinical and Vaccine Immunology, 19, 1339–1347.

    Article  Google Scholar 

  20. Spencer, A. J., Hill, F., Honeycutt, J. D., Cottingham, M. G., Bregu, M., Rollier, C. S., Furze, J., Draper, S. J., Søgaard, K. C., Gilbert, S. C., Wyllie, D. H., & Hill, A. V. (2012). Fusion of the Mycobacterium tuberculosis antigen 85A to an oligomerization domain enhances its immunogenicity in both mice and non-human primates. PloS One, 7, e33555.

    Article  CAS  Google Scholar 

  21. Singh, P. P., Parra, M., Cadieux, N., & Brennan, M. J. (2008). A comparative study of host response to three Mycobacterium tuberculosis PE_PGRS proteins. Microbiology, 154, 3469–3479.

    Article  CAS  Google Scholar 

  22. Neyrolles, O., Gould, K., Gares, M. P., Brett, S., Janssen, R., O’Gaora, P., Herrmann, J. L., Prevost, M. C., Perret, E., Thole, J. E., & Young, D. (2001). Lipoprotein access to MHC class I presentation during infection of murine macrophages with live mycobacteria. Journal of Immunology, 166, 447–457.

    Article  CAS  Google Scholar 

  23. Lu, L., Zeng, H. Q., Wang, P. L., Shen, W., Xiang, T. X., & Mei, Z. C. (2011). Oral immunization with recombinant Mycobacterium smegmatis expressing the outer membrane protein 26-kilodalton antigen confers prophylactic protection against Helicobacter pylori infection. Clinical and Vaccine Immunology, 18, 1957–1961.

    Article  CAS  Google Scholar 

  24. Faludi, I., Szabó, A. M., Burián, K., Endrész, V., & Miczák, A. (2011). Recombinant Mycobacterium smegmatis vaccine candidates. Acta Microbiologica and Immunologica Hungarica, 58, 13–22.

    Article  CAS  Google Scholar 

  25. Jeyanathan, M., Thanthrige-Don, N., & Xing, Z. (2012). A novel genetically engineered Mycobacterium smegmatis-based vaccine promotes anti-TB immunity. Expert Review of Vaccines, 11, 35–38.

    Article  CAS  Google Scholar 

  26. Sweeney, K. A., Dao, D. N., Goldberg, M. F., Hsu, T., Venkataswamy, M. M., Henao-Tamayo, M., Ordway, D., Sellers, R. S., Jain, P., Chen, B., Kim, J., Lukose, R., Chan, J., Orme, I. M., Porcelli, S. A., & Jacobs, W. R., Jr. (2011). A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nature Medicine, 17, 1261–1268.

    Article  CAS  Google Scholar 

  27. Chapman, R., Chege, G., Shephard, E., Stutz, H., & Williamson, A. L. (2010). Recombinant Mycobacterium bovis BCG as an HIV vaccine vector. Current HIV Research, 8, 282–298.

    Article  CAS  Google Scholar 

  28. Jin, R., Guo, S., Wu, L., Fan, X., Ma, H., Lowrie, D. B., & Zhang, J. (2013). Il17A autoantibody induced by recombinant protein Ag85A-Il17A. Applied Biochemistry and Biotechnology, 169, 502–510.

    Article  CAS  Google Scholar 

  29. Zhang, H., Peng, P., Miao, S., Zhao, Y., Mao, F., Wang, L., Bai, Y., Xu, Z., Wei, S., & Shi, C. (2010). Recombinant Mycobacterium smegmatis expressing an ESAT6-CFP10 fusion protein induces anti-mycobacterial immune responses and protects against Mycobacterium tuberculosis challenge in mice. Scandinavian Journal of Immunology, 72, 349–357.

    Article  CAS  Google Scholar 

  30. Delavallée, L., Assier, E., Denys, A., Falgarone, G., Zagury, J. F., Muller, S., Bessis, N., & Boissier, M. C. (2008). Vaccination with cytokines in autoimmune diseases. Annals of Medicine, 40, 343–351.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (No. 81172887) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Guo, S., Wu, L. et al. IL-17A Autoantibody Induced by Recombinant Mycobacterium smegmatis Expressing Ag85A-IL-17A Fusion Protein. Appl Biochem Biotechnol 176, 2018–2026 (2015). https://doi.org/10.1007/s12010-015-1697-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1697-9

Keywords

Navigation