Skip to main content

Advertisement

Log in

Identification of lncRNA MEG3 Binding Protein Using MS2-Tagged RNA Affinity Purification and Mass Spectrometry

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Long noncoding RNAs (lncRNAs) are nonprotein coding transcripts longer than 200 nucleotides. Recently in mammals, thousands of long noncoding RNAs have been identified and studied as key molecular players in different biological processes with protein complexes. As a long noncoding RNA, maternally expressed gene 3 (MEG3) plays an important role in many cellular processes. However, the mechanism underlying MEG3 regulatory effects remains enigmatic. By using the specific interaction between MS2 coat protein and MS2 RNA hairpin, we developed a method (MS2-tagged RNA affinity purification and mass spectrometry (MTRAP-MS)) to identify proteins that interact with MEG3. Mass spectrometry and gene ontology (GO) analysis showed that MEG3 binding proteins possess nucleotide binding properties and take part in transport, translation, and other biological processes. In addition, interleukin enhancer binding factor 3 (ILF3) and poly(A) binding protein, cytoplasmic 3 (PABPC3) were validated for their interaction with MEG3. These findings indicate that the newly developed method can effectively enrich lncRNA binding proteins and provides a strong basis for studying MEG3 functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kornienko, A. E., Guenzl, P. M., Barlow, D. P., & Pauler, F. M. (2013). Gene regulation by the act of long non-coding RNA transcription. BMC Biology, 11, 59. doi:10.1186/1741-7007-11-59.

    Article  Google Scholar 

  2. Wilusz, J. E., Sunwoo, H., & Spector, D. L. (2009). Long noncoding RNAs: functional surprises from the RNA world. Genes & Development, 23(13), 1494–1504. doi:10.1101/gad.1800909.

    Article  CAS  Google Scholar 

  3. Mercer, T. R., Dinger, M. E., & Mattick, J. S. (2009). Long non-coding RNAs: insights into functions. Nature Reviews Genetics, 10(3), 155–159. doi:10.1038/nrg2521.

    Article  CAS  Google Scholar 

  4. Wang, K. C., & Chang, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Molecular Cell, 43(6), 904–914. doi:10.1016/j.molcel.2011.08.018.

    Article  CAS  Google Scholar 

  5. Nagano, T., & Fraser, P. (2011). No-nonsense functions for long noncoding RNAs. Cell, 145(2), 178–181. doi:10.1016/j.cell.2011.03.014.

    Article  CAS  Google Scholar 

  6. Clark, M. B., & Mattick, J. S. (2011). Long noncoding RNAs in cell biology. Seminars in Cell & Developmental Biology, 22(4), 366–376. doi:10.1016/j.semcdb.2011.01.001.

    Article  CAS  Google Scholar 

  7. Mattick, J. S., Amaral, P. P., Dinger, M. E., Mercer, T. R., & Mehler, M. F. (2009). RNA regulation of epigenetic processes. BioEssays, 31(1), 51–59. doi:10.1002/bies.080099.

    Article  CAS  Google Scholar 

  8. Wutz, A. (2011). Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nature Reviews Genetics, 12(8), 542–553. doi:10.1038/nrg3035.

    Article  CAS  Google Scholar 

  9. Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., Goodnough, L. H., Helms, J. A., Farnham, P. J., Segal, E., & Chang, H. Y. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311–1323. doi:10.1016/j.cell.2007.05.022.

    Article  CAS  Google Scholar 

  10. Huarte, M., Guttman, M., Feldser, D., Garber, M., Koziol, M. J., Kenzelmann-Broz, D., Khalil, A. M., Zuk, O., Amit, I., Rabani, M., Attardi, L. D., Regev, A., Lander, E. S., Jacks, T., & Rinn, J. L. (2010). A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 142(3), 409–419. doi:10.1016/j.cell.2010.06.040.

    Article  CAS  Google Scholar 

  11. Yoon, J. H., Abdelmohsen, K., Srikantan, S., Yang, X., Martindale, J. L., De, S., Huarte, M., Zhan, M., Becker, K. G., & Gorospe, M. (2012). LincRNA-p21 suppresses target mRNA translation. Molecular Cell, 47(4), 648–655. doi:10.1016/j.molcel.2012.06.027.

    Article  CAS  Google Scholar 

  12. Gong, C., & Maquat, L. E. (2011). lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature, 470(7333), 284–288. doi:10.1038/nature09701.

    Article  CAS  Google Scholar 

  13. Hall, K. B. (1995). Uses of 13C- and 15N-labeled RNA in NMR of RNA-protein complexes. Methods in Enzymology, 261, 542–559.

    Article  CAS  Google Scholar 

  14. Gilbert, C., Svejstrup, J.Q. (2006). RNA immunoprecipitation for determining RNA-protein associations in vivo. Current Protocols in Molecular Biology Chapter 27:Unit 27 24. doi:10.1002/0471142727.mb2704s75.

  15. Ule, J., Jensen, K. B., Ruggiu, M., Mele, A., Ule, A., & Darnell, R. B. (2003). CLIP identifies Nova-regulated RNA networks in the brain. Science, 302(5648), 1212–1215. doi:10.1126/science.1090095.

    Article  CAS  Google Scholar 

  16. Rouault, T. A., Hentze, M. W., Haile, D. J., Harford, J. B., & Klausner, R. D. (1989). The iron-responsive element binding protein: a method for the affinity purification of a regulatory RNA-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 86(15), 5768–5772.

    Article  CAS  Google Scholar 

  17. Pfander, S., Fiammengo, R., Kirin, S. I., Metzler-Nolte, N., & Jaschke, A. (2007). Reversible site-specific tagging of enzymatically synthesized RNAs using aldehyde-hydrazine chemistry and protease-cleavable linkers. Nucleic Acids Research, 35(4), e25. doi:10.1093/nar/gkl1110.

    Article  Google Scholar 

  18. Tani, H., Mizutani, R., Salam, K. A., Tano, K., Ijiri, K., Wakamatsu, A., Isogai, T., Suzuki, Y., & Akimitsu, N. (2012). Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Research, 22(5), 947–956. doi:10.1101/gr.130559.111.

    Article  CAS  Google Scholar 

  19. Miyoshi, N., Wagatsuma, H., Wakana, S., Shiroishi, T., Nomura, M., Aisaka, K., Kohda, T., Surani, M. A., Kaneko-Ishino, T., & Ishino, F. (2000). Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes to Cells, 5(3), 211–220.

    Article  CAS  Google Scholar 

  20. Zhang, X. (2003). A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. The Journal of Clinical Endocrinology & Metabolism, 88(11), 5119–5126. doi:10.1210/jc.2003-030222.

    Article  CAS  Google Scholar 

  21. Zhou, Y., Zhong, Y., Wang, Y., Zhang, X., Batista, D. L., Gejman, R., Ansell, P. J., Zhao, J., Weng, C., & Klibanski, A. (2007). Activation of p53 by MEG3 Non-coding RNA. Journal of Biological Chemistry, 282(34), 24731–24742. doi:10.1074/jbc.M702029200.

    Article  CAS  Google Scholar 

  22. Brimacombe, R., Atmadja, J., Stiege, W., & Schuler, D. (1988). A detailed model of the three-dimensional structure of Escherichia coli 16 S ribosomal RNA in situ in the 30 S subunit. Journal of Molecular Biology, 199(1), 115–136.

    Article  CAS  Google Scholar 

  23. Hockensmith, J. W., Wahl, A. F., Kowalski, S., & Bambara, R. A. (1986). Purification of a calf thymus DNA-dependent adenosinetriphosphatase that prefers a primer-template junction effector. Biochemistry, 25(24), 7812–7821.

    Article  CAS  Google Scholar 

  24. Hosoda, N., Kim, Y. K., Lejeune, F., & Maquat, L. E. (2005). CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nature Structural and Molecular Biology, 12(10), 893–901. doi:10.1038/nsmb995.

    Article  CAS  Google Scholar 

  25. Kim, Y. K., Furic, L., Desgroseillers, L., & Maquat, L. E. (2005). Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell, 120(2), 195–208. doi:10.1016/j.cell.2004.11.050.

    Article  CAS  Google Scholar 

  26. Dennis, G., Jr., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., & Lempicki, R. A. (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biology, 4(5), P3.

    Article  Google Scholar 

  27. Braconi, C., Kogure, T., Valeri, N., Huang, N., Nuovo, G., Costinean, S., Negrini, M., Miotto, E., Croce, C. M., & Patel, T. (2011). microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene, 30(47), 4750–4756. doi:10.1038/onc.2011.193.

    Article  CAS  Google Scholar 

  28. Xu, Y. H., & Grabowski, G. A. (1999). Molecular cloning and characterization of a translational inhibitory protein that binds to coding sequences of human acid beta-glucosidase and other mRNAs. Molecular Genetics and Metabolism, 68(4), 441–454. doi:10.1006/mgme.1999.2934.

    Article  CAS  Google Scholar 

  29. Xu, Y. H., Busald, C., & Grabowski, G. A. (2000). Reconstitution of TCP80/NF90 translation inhibition activity in insect cells. Molecular Genetics and Metabolism, 70(2), 106–115. doi:10.1006/mgme.2000.3010.

    Article  CAS  Google Scholar 

  30. Larcher, J. C., Gasmi, L., Viranaicken, W., Edde, B., Bernard, R., Ginzburg, I., & Denoulet, P. (2004). Ilf3 and NF90 associate with the axonal targeting element of Tau mRNA. The FASEB Journal, 18(14), 1761–1763. doi:10.1096/fj.04-1763fje.

    CAS  Google Scholar 

  31. Brownawell, A. M., & Macara, I. G. (2002). Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins. Journal of Cell Biology, 156(1), 53–64. doi:10.1083/jcb.200110082.

    Article  CAS  Google Scholar 

  32. Feral, C., Guellaen, G., & Pawlak, A. (2001). Human testis expresses a specific poly(A)-binding protein. Nucleic Acids Research, 29(9), 1872–1883.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported partially by the Chinese State Key Projects for Basic Research (2013CB910801), the National High Tech Research and Development Program (2012AA022501), and the Chinese National Natural Science Foundation projects (31370760, 31270836, and 31170713).

Conflict of Interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinghua Jin or Hanjiang Fu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhu, J., Jiang, T. et al. Identification of lncRNA MEG3 Binding Protein Using MS2-Tagged RNA Affinity Purification and Mass Spectrometry. Appl Biochem Biotechnol 176, 1834–1845 (2015). https://doi.org/10.1007/s12010-015-1680-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1680-5

Keywords

Navigation