Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Influence of Feeding and Controlled Dissolved Oxygen Level on the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolymer by Cupriavidus sp. USMAA2-4 and Its Characterization

  • 326 Accesses

  • 11 Citations

Abstract

Copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] has been the center of attention in the bio-industrial fields, as it possesses superior mechanical properties compared to poly(3-hydroxybutyrate) [P(3HB)]. The usage of oleic acid and 1-pentanol was exploited as the carbon source for the production of P(3HB-co-3HV) copolymer by using a locally isolated strain Cupriavidus sp. USMAA2-4. In this study, the productivity of polyhydroxyalkanoate (PHA) was improved by varying the frequency of feeding in fed-batch culture. The highest productivity (0.48 g/L/h) that represents 200 % increment was obtained by feeding the carbon source and nitrogen source three times and also by considering the oxygen uptake rate (OUR) and oxygen transfer rate (OTR). A significantly higher P(3HB-co-3HV) concentration of 25.7 g/L and PHA content of 66 wt% were obtained. The 3-hydroxyvalerate (3HV) monomer composition obtained was 24 mol% with the growth of 13.3 g/L. The different frequency of feeding carried out has produced a blend copolymer and has broadened the monomer distribution. In addition, increase in number of granules was also observed as the frequency of feeding increases. In general, the most glaring increment in productivity offer advantage for industrial P(3HB-co-3HV) production, and it is crucial in developing cost-effective processes for commercialization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Chien, C. C., Chen, C. C., Choi, M. H., Kung, S. S., & Wei, Y. H. (2007). Production of poly [beta]-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment. Journal of Biotechnology, 132, 259–263.

  2. 2.

    Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., & Shah, S. (2007). Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants – A review. Biotechnology Advances, 25, 148–175.

  3. 3.

    Akiyama, M., Taima, Y., & Doi, Y. (1992). Production of poly(3-hydroxyalkanoates) by a bacterium of the genus Alcaligenes utilizing long-chain fatty acids. Applied Microbiology and Biotechnology, 37, 698–701.

  4. 4.

    Ayub, N. D., Pettinari, M. J., Méndez, B. S., & López, N. I. (2007). The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. Plasmid, 58, 240–248.

  5. 5.

    Iwata, T., Tsunoda, K., Aoyagi, Y., Kusaka, S., Yonezawa, N., & Doi, Y. (2003). Mechanical properties of uniaxially cold-drawn films of poly ([R]-3-hydroxybutyrate). Polymer Degradation and Stability, 79, 217–224.

  6. 6.

    Sudesh, K., Abe, H., & Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 25, 1503–1555.

  7. 7.

    Kim, D. Y., Park, D. S., Kwon, S. B., Chung, M. G., Bae, K. S., Park, H. Y., & Rhee, Y. H. (2009). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co polyesters with a high molar fraction of 3-hydroxyvalerate by an insect symbiotic Burkholderia sp. IS-01. The Journal of Microbiology, 47, 651–656.

  8. 8.

    Cerrone, F., Duane, G., Casey, E., Davis, R., Belton, I., Kenny, S. T., Guzik, M. W., Woods, T., Babu, R. P., & O’Connor, K. (2014). Fed batch strategies using butyrate for high cell density cultivation of Pseudomonas putida and its use as a biocatalyst. Applied Microbiology and Biotechnology, 98(22), 9217–9228.

  9. 9.

    Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40, 607–619.

  10. 10.

    Lee, S. Y., & Choi, J. I. (1998). Effects of fermentation performance by Alcaligenes latus. Polymer Degradation and Stability, 59, 387–393.

  11. 11.

    Chen, G. Q., Zhang, G., Park, S. J., & Lee, S. Y. (2001). Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Applied Microbiology and Biotechnology, 57, 50–55.

  12. 12.

    Amirul, A. A., Yahya, A. R. M., Sudesh, K., Azizan, M. N. M., & Majid, M. I. A. (2009). Isolation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) producer from Malaysian environment using γ-butyrolactone as carbon source. World Journal Of Microbiology and Biotechnology, 25, 1199–1206.

  13. 13.

    Ochoa, F. G., & Gomez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnology Advances, 27, 153–176.

  14. 14.

    Majid, M. I. A. (1988). PhD thesis, University of Bath.

  15. 15.

    Chee, J.-W., Amirul, A. A., Majid, M. I. A., & Mansor, S. M. (2008). Factors influencing the release of Mitragyna speciosa crude extracts from biodegradable P(3HB-co-4HB). International Journal of Pharmaceutics, 361, 1–6.

  16. 16.

    Mancini, S. D., & Zanin, M. (1999). Recyclability of Pet from virgin resin. Materials Research, 2, 33–38.

  17. 17.

    Amirul, A. A., Syairah, S. N., Yahya, A. R. M., Azizan, M. N. M., & Majid, M. I. A. (2008). Synthesis of biodegradable polyesters by Gram negative bacterium isolated from Malaysian environment. World Journal of Microbiology and Biotechnology, 24, 1327–1332.

  18. 18.

    Loo, C. Y., Lee, W. H., Tsuge, T., Doi, Y., & Sudesh, K. (2005). Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnology Letters, 27, 1405–1410.

  19. 19.

    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

  20. 20.

    Jeong, H., Park, J., & Kim, H. (2013). Determination of NH4 + in environmental water with interfering substances using the modified Nessler method. Journal of Chemistry, Article ID 359217.

  21. 21.

    Solorzano, L. (1969). Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceonography, 14(5), 799–801.

  22. 22.

    Braunegg, G., Sonnleitner, B., & Lafferty, R. M. (1978). A rapid gas chromatography method for determination of the poly-β-hydroxybutyric acid in microbial biomass. European Journal of Applied Microbiology and Biotechnology, 6, 29–37.

  23. 23.

    Lenczak, J. L., Schmidell, W., & Aragao, G. M. F. (2013). High cell density strategies for polyhydroxyalkanoate production: a review. Journal of Industrial Microbiology and Biotechnology, 40(3-4), 275–286.

  24. 24.

    Yamane, T., Chen, X., & Ueda, S. (1996). Growth-associated production of poly(3-hydroxyvalerate) from n-pentanol by a methylotrophic bacterium, Paracoccus denitrificans. Applied and Environmental Microbiology, 62, 380–384.

  25. 25.

    Shang, L., Jiang, M., & Chang, H. N. (2003). Poly(3-hydroxybutyrate) synthesis in fed batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnology Letters, 25, 1415–1419.

  26. 26.

    Lee, S. Y., Choi, J. I., & Wong, H. H. (1999). Recent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review. International Journal of Biological Macromolecules, 25, 31–36.

  27. 27.

    Madden, L. A., & Anderson, A. J. (1998). Synthesis and characterization of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxybutyrate) polymer mixtures production in high-density fed –batch. Macromolecules, 31, 5660–5667.

  28. 28.

    Shang, L., Yim, S. C., Park, H. G., & Chang, H. N. (2004). Sequential feeding of glucose and valerate in a fed-batch culture of Ralstonia eutropha for production of poly(hydroxybutyrate-co-hydroxyvalerate) with high 3-hydroxyvalerate fraction. Biotechnology Progress, 20, 140–144.

  29. 29.

    Choi, J. I., & Lee, S. Y. (1999). High-level production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant. Escherichia coli Applied Environmental and Microbiology, 65, 4363–4368.

  30. 30.

    Majid, M. I. A., Akmal, D. H., Few, L. L., Agustien, A., Toh, M. S., Samian, M. R., Najimudin, N., & Azizan, M. N. (1999). Production of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Erwinia sp. USMI-20. International Journal of Biological Macromolecules, 25, 95–104.

  31. 31.

    Ma, C.K., Chua, H., Yu, P.H.U., & Hong, K. (2000). Optimal production of polyhydroxyalkanoates in activated sludge biomass. Applied Biochemistry and Biotechnology, 84-86, 981-989.

  32. 32.

    Garcia, I. L., Lopez, J. A., Dorado, M. P., Kopsahelis, N., Alexandri, M., Papanikolaou, S., Villar, M. A., & Koutinas, A. A. (2013). Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Bioresource Technology, 130, 16–22.

  33. 33.

    Quangliano, J. C., & Miyazaki, S. S. (1997). Effect of aeration and carbon/nitrogen ratio on the molecular mass of the biodegradable polymer poly-ß-hydroxybutyrate obtained from Azotobacter chroococcum 6B. Applied Microbiology and Biotechnology, 48, 662–664.

  34. 34.

    Calik, P., Yilgor, P., Ayhan, P., & Demir, A. S. (2004). Oxygen transfer effects on recombinant benzaldehyde lyase production. Chemical Engineering Science, 59, 5075–5083.

  35. 35.

    Zafar, M., Kumar, S., & Dhiman, A. K. (2012). Modeling and optimization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from cane molasses by Azohydromonas lata MTCC 2311 in a stirred-tank reactor: effect of agitation and aeration regimes. Journal of Industrial Microbiology and Biotechnology, 39, 987–1001.

  36. 36.

    Third, K. A., Newland, M., & Ruwisch, R. C. (2003). The effect of dissolved oxygen on PHB accumulation in activated sludge cultures. Biotechnology and Bioengineering, 82, 238–250.

  37. 37.

    Choi, J. C., Shin, H. D., & Lee, Y. H. (2002). Pilot scale production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed batch culture of recombinant. Eschericia Coli Enzyme and Microbial Technology, 32, 178–185.

  38. 38.

    Nyman, A. K. (2010). Master thesis.

  39. 39.

    Kamiya, N., Yamamoto, Y., Inoue, Y., & Chujo, R. (1989). Microstructure of bacterially synthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules, 22, 1676–1682.

  40. 40.

    Ivanova, G., Serafim, L. S., Lemos, P. C., Ramos, A. M., Reis, M. A. M., & Cabrita, E. J. (2009). Influence of feeding strategies of mixed microbial cultures on the chemical composition and microstructure of copolyesters P(3HB-co-3HV) analyzed by NMR and statistical analysis. Magnetic Resonance in Chemistry, 47, 497–504.

  41. 41.

    Luo, S., Grubb, D. T., & Netravali, A. N. (2002). The effect of molecular weight on the lamellar structure, thermal and mechanical properties of poly(hydroxybutyrate-co- hydroxyvalerates). Polymer, 43, 4159–4166.

  42. 42.

    Scandola, M., Ceccoralli, G., & Doi, Y. (1990). Viscoelastic relaxations and thermal properties of bacterial poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). International Journal of Biological Macromolecules, 12, 112–117.

  43. 43.

    Doi, Y. (1990). Microbial polyesters. Ch 3. New York: VCH Publishers.

  44. 44.

    You, J. W., Chiu, H. J., Shu, W. J., & Don, T. M. (2003). Influence of hydroxyvalerate content on the crystallization kinetics of poly(hydroxybutyrate-co-hydroxyvalerate). Journal of Polymer Research, 10, 47–54.

  45. 45.

    Zhang, H. F., Ma, L., Wang, Z. H., & Chen, G. Q. (2009). Biosynthesis and characterization of 3-hydroxyalkanoate terpolyesters with adjustable properties by Aeromonas hydrophila. Biotechnology and Bioengineering, 104(3), 582–589.

  46. 46.

    Kunioka, M., Tamaki, A., & Doi, Y. (1989). Crystalline and thermal properties of bacterial copolyesters: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules, 22, 694–697.

  47. 47.

    Galego, N., Rozsa, C., Sanchez, R., Fung, J., Vazquez, A., & Tomas, J. S. (2000). Characterization and application of poly(ß-hydroxyalkanoates) family as composite Biomaterial. Polymer Testing, 19, 485–49.

Download references

Acknowledgments

The authors acknowledge the USM Science Fellowship awarded to Shantini [RU(1001/441/CIPS/AUPE001)] that has resulted in this article.

Compliance with Ethical Standards

All the co-authors have seen and agreed with the contents of the manuscript, and there is no financial interest to report. We certify that the submission is the original work by us and is not under review in any other publication. We also would like to justify that we do not have any conflict of interest to declare and this study does not involve the usage of animals.

Author information

Correspondence to A. A. Amirul.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shantini, K., Yahya, A.R.M. & Amirul, A.A. Influence of Feeding and Controlled Dissolved Oxygen Level on the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolymer by Cupriavidus sp. USMAA2-4 and Its Characterization. Appl Biochem Biotechnol 176, 1315–1334 (2015). https://doi.org/10.1007/s12010-015-1648-5

Download citation

Keywords

  • Biopolymer
  • 1-Pentanol
  • Oleic acid
  • Productivity
  • P(3HB-co-3HV)
  • Fed-batch