Applied Biochemistry and Biotechnology

, Volume 176, Issue 4, pp 1203–1216 | Cite as

Enhancing T-DNA Transfer Efficiency in Barley (Hordeum vulgare L.) Cells Using Extracellular Cellulose and Lectin

  • Filiz Gürel
  • Cüneyt Uçarlı
  • Feyza Tufan
  • Deepak M. Kalaskar


A major limitation of transforming barley tissues by Agrobacterium tumefaciens is the low frequency of T-DNA transfer due to recalcitrance of barley as a host. The effect of extracellular cellulose and lectin on Agrobacterium transformation efficiency was investigated in this study. Barley callus cultures were transformed with the AGL1 strain containing the vector pBI121 in the presence of 10 mg mL−1 cellulose or 0.001, 0.05 and 0.1 mg mL−1 lectin. Addition of cellulose significantly (P ≤ 0.05) increased the number of GUS spots by 50 % compared to standard conditions in the presence of only 200 μM acetosyringone (AS). Frequency of G418-resistant aggregates on the surfaces of callus cultures was 29 and 71.5 %, following AS and AS + cellulose treatments, respectively, after 4 weeks of selection. Presence of 0.05 or 0.1 mg mL−1 lectin also increased the number of GUS spots and frequency of G418-resistant cells in the selection period, but the increase in blue spots was not significant. We examined the effect of lectin and cellulose on bacterial attachment to callus tissues. Both cellulose and lectin were found to have a significant positive effect on the numbers of bacteria attached to barley callus. Epifluorescence microscopy revealed that Agrobacterium cells had accumulated in the scaffolds of irregular fibrous cellulose with a mean particle size of 200 μm. Expression of nptII in transformed callus lines confirmed the stable transformation of the gene. Our study showed for the first time the binding of Agrobacterium cells to fibrous cellulose and also demonstrated how polysaccharides and glycoproteins can be used to improve T-DNA transfer in monocotyledon transformation procedures.


Agrobacterium Barley Callus Cellulose Lectin T-DNA transfer 



This work was supported by the Scientific Research Projects Coordination Unit of Istanbul University Project No. BAP 4115. The authors thank Dr. Hesna Yiğit for the technical advices on epifluorescence microscopy, Dr. Huw Jones for providing the Agrobacterium AGL1 strain and Dr. Terje M. Steinum for critical reading of the manuscript.


  1. 1.
    Vain, P. (2007). Thirty years of plant transformation technology development. Plant Biotechnology Journal, 5, 221–229.CrossRefGoogle Scholar
  2. 2.
    Horsch, R. B., Fry, J. E., Hoffmann, N., Wallroth, M., Eichholtz, D., Rogers, S. G., & Fraley, R. T. (1985). A simple and general method for transferring genes into plants. Science, 227, 1229–1231.CrossRefGoogle Scholar
  3. 3.
    Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16, 735–743.CrossRefGoogle Scholar
  4. 4.
    Kapila, J., De Rycke, R., Van Montagu, M., & Angenon, G. (1997). An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Science, 122, 101–108.CrossRefGoogle Scholar
  5. 5.
    Yang, Y., Li, R., & Qi, M. (2000). In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant Journal, 22, 543–551.CrossRefGoogle Scholar
  6. 6.
    Sticklen, M. B., & Oraby, H. (2005). Shoot apical meristem: a sustainable explant for genetic engineering of cereal crops. In Vitro Celullular & Development Biology: Plant, 41, 187–200.CrossRefGoogle Scholar
  7. 7.
    De Cleene, M., & De Ley, J. (1976). The host range of crown gall. Botanical Review, 42, 389–466.CrossRefGoogle Scholar
  8. 8.
    Potrykus, I. (1991). Gene transfer to plants: assessment of published approaches and results. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 205–225.CrossRefGoogle Scholar
  9. 9.
    Sood, P., Bhattacharya, A., & Sood, A. (2011). Problems and possibilities of monocot transformation. Biologia Plantarum, 55, 1–15.CrossRefGoogle Scholar
  10. 10.
    Ji, Q., Xu, X., & Wang, K. (2013). Genetic transformation of major cereal crops. The International Journal of Developmental Biology, 57, 495–508.CrossRefGoogle Scholar
  11. 11.
    Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thonton, S., & Brettel, R. (1997). Agrobacterium tumefaciens-mediated barley transformation. Plant Journal, 11, 1369–1376.CrossRefGoogle Scholar
  12. 12.
    Funatsuki, H., Kuroda, M., Lazzeri, P. A., Müller, E., Lörz, H., & Kishinami, I. (1995). Fertile transgenic barley generated by direct DNA transfer to protoplasts. Theoretical and Applied Genetics, 91, 707–712.CrossRefGoogle Scholar
  13. 13.
    Wu, H., McCormac, A. C., Elliott, M. C., & Chen, D. F. (1998). Agrobacterium-mediated stable transformation of cell suspension cultures of barley (Hordeum vulgare). Plant Cell Tissue and Organ Culture, 54, 161–171.CrossRefGoogle Scholar
  14. 14.
    Holme, I. B., Brinch-Pedersen, H., Lange, M., & Holm, P. B. (2006). Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Reports, 25, 1325–1335.CrossRefGoogle Scholar
  15. 15.
    Harwood, W. A., Bean, S. J., Chen, D. F., Mullineaux, P. M., & Snape, J. W. (1995). Transformation studies in Hordeum vulgare using a highly regenerable microspore system. Euphytica, 85, 113–118.CrossRefGoogle Scholar
  16. 16.
    Kumlehn, J., Serazetdinova, L., Hensel, G., Becker, D., & Loerz, H. (2006). Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnology Journal, 4, 251–261.CrossRefGoogle Scholar
  17. 17.
    Gürel, F., & Gözükırmızı, N. (2000). Optimization of gene transfer into barley (Hordeum vulgare L.) mature embryos by tissue electroporation. Plant Cell Reports, 19, 787–791.CrossRefGoogle Scholar
  18. 18.
    Goedeke, S., Hensel, G., Kapusi, E., Gahrtz, M., & Kumlehn, J. (2007). Transgenic barley in fundamental research and biotechnology. Transgenic Plant Journal, 1, 104–117.Google Scholar
  19. 19.
    Cheng, M., Lowe, B. A., Spencer, T. M., Ye, X., & Armstrong, C. L. (2004). Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Celular & Developmental Biology: Plant, 40, 31–45.CrossRefGoogle Scholar
  20. 20.
    Lee, Y. W., Jin, S., Sims, W. S., & Nester, E. W. (1995). Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proceedings of the National Academy of Sciences of the United States of America, 92, 12245–12249.CrossRefGoogle Scholar
  21. 21.
    Heindl, J. E., Wang, Y., Heckel, B. C., Mohari, B., Feirer, N., & Fuqua, C. (2014). Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium. Frontiers in Plant Science, 5, 1–21.CrossRefGoogle Scholar
  22. 22.
    Jonas, R., & Farah, L. F. (1998). Production and application of microbial cellulose. Polymer Degradation and Stability, 59, 101–106.CrossRefGoogle Scholar
  23. 23.
    Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Review Microbiology, 8, 623–633.Google Scholar
  24. 24.
    Matthysse, A. G., Marry, M., Krall, L., Kaye, M., Ramey, B. E., Fuqua, C., & White, A. R. (2005). The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. The American Phytopathological Society, 18, 1002–1010.Google Scholar
  25. 25.
    Kalaskar, D. M., Gough, J. E., Ulijn, R. V., Sampson, W. W., & Eichhorn, S. J. (2006). Engineered & chemically modified porous cellulose fibrous networks for controlled cell adhesion. European Cells and Materials, 11, 62.Google Scholar
  26. 26.
    Kalaskar, D. M., Gough, J. E., Ulijn, R. V., Sampson, W. W., Scurr, D. J., Rutten, F. J., Alexander, M. R., Merry, C. L. R., & Eichhorn, S. J. (2008). Controlling cell morphology on amino acid-modified cellulose. Soft Matter, 4, 1059–1065.CrossRefGoogle Scholar
  27. 27.
    Rodriguez-Navarro, D. N., Dardanelli, M. S., & Ruiz-Sainz, J. E. (2007). Attachment of bacteria to the roots of higher plants. FEMS Microbiology Letters, 272, 127–136.CrossRefGoogle Scholar
  28. 28.
    Liu, W., Yang, N., Ding, J., Huang, R. H., Hu, Z., & Wang, D. C. (2005). Structural mechanism governing the quaternary organization of monocot mannose-binding lectin revealed by the novel monomeric structure of an orchid lectin. Journal of Biological Chemistry, 280, 14865–14876.CrossRefGoogle Scholar
  29. 29.
    Van Damme, E., Peumans, W., Barre, A., & Rougé, P. (1998). Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Critical Reviews in Plant Sciences, 17, 575–692.CrossRefGoogle Scholar
  30. 30.
    Boudart, G., Minic, Z., Albenne, C., Canut, H., Jamet, E., & Pont-Lezica, R. (2007). In J. Samaj & J. Thelen (Eds.), Plant proteomics: cell wall proteome (pp. 169–185). Berlin: Springer.Google Scholar
  31. 31.
    Ridge, R. W., Kim, R., & Yoshida, F. (1998). The diversity of lectin detectable sugar residues on root hair tips of selected legumes correlates with the diversity of their host ranges for rhizobia. Protoplasma, 2002, 84–90.CrossRefGoogle Scholar
  32. 32.
    Rudiger, H., & Gabius, H. J. (2001). Plant lectins: occurrence, biochemistry, functions and applications. Glycoconjugate Journal, 18, 589–613.CrossRefGoogle Scholar
  33. 33.
    Laus, M. C., Logman, T. J., Lamers, G. E., van Brusel, A. A. N., Carlson, R., & Kijne, J. W. (2006). A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Molecular Microbiology, 59, 1704–1713.CrossRefGoogle Scholar
  34. 34.
    Abdian, P. L., Caramelo, J. J., Ausmees, N., & Zorreguieta, A. (2013). RapA2 is a calcium-binding lectin composed of two highly conserved cadherin-like domains that specifically recognize Rhizobium leguminosarum acidic exopolysaccharides. Journal of Biological Chemistry, 288, 2893–2904.CrossRefGoogle Scholar
  35. 35.
    Tomlinson, A. D., & Fuqua, C. (2009). Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens. Current Opinion in Microbiology, 12, 708–714.CrossRefGoogle Scholar
  36. 36.
    Hofgen, R., & Willmitzer, L. (1988). Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research, 16, 9877.CrossRefGoogle Scholar
  37. 37.
    Jefferson, R. A. (1987). Assaying chimeric genes in plants: GUS gene fusion system. Plant Molecular Biology Reporter, 5, 387–405.CrossRefGoogle Scholar
  38. 38.
    Grant, J., & Cooper, P. (2006). In K. Wang (Ed.), Methods in molecular biology: Agrobacterium protocols, vol. 343: Peas (Pisum sativum L.) (pp. 337–346). Totowa: Humana.Google Scholar
  39. 39.
    Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). NY: Cold Spring Harbor.Google Scholar
  40. 40.
    Jarosová, J., & Kundu, J. K. (2010). Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biology, 10, 146.CrossRefGoogle Scholar
  41. 41.
    Bhattacharya, A., Sood, P., & Citovsky, V. (2010). The roles of plant phenolics in defense and communication during Agrobacterium and Rhizobium infection. Molecular Plant Pathology, 11, 705–719.Google Scholar
  42. 42.
    McCormac, A. C., Wu, H., Bao, M., Wang, Y., Xu, R., Elliott, M. C., & Chen, D. F. (1998). The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Euphytica, 99, 17–25.CrossRefGoogle Scholar
  43. 43.
    Amoah, B. K., Wu, H., Sparks, C., & Jones, H. D. (2001). Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. Journal of Experimental Biology, 52, 1135–1142.Google Scholar
  44. 44.
    Bartlett, J. G., Alves, S. C., Smedley, M., Snape, J. W., & Harwood, W. A. (2008). High-throughput Agrobacterium-mediated barley transformation. Plant Methods, 4, 22.CrossRefGoogle Scholar
  45. 45.
    Shri, M., Rai, A., Verma, P. K., Misra, P., Dubey, S., Kumar, S., Verma, S., Gautam, N., Tripathi, R. D., Trivedi, P. K., & Chakrabarty, D. (2013). An improved Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.) cultivars. Protoplasma, 250, 631–636.CrossRefGoogle Scholar
  46. 46.
    Cho, M. J., Wu, E., Kwan, J., Yu, M., Banh, J., Linn, W., Anand, A., Li, Z., Te Ronde, S., Register, J. C., III, Jones, T. J., & Zhao, Z. Y. (2014). Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Reports, 33, 1767–1777.CrossRefGoogle Scholar
  47. 47.
    Lindman, B. (2010). In M. Fanun (Ed.), Colloids in biotechnology, vol. 152: amphiphilic biopolymers: DNA and cellulose (pp. 1–7). London: CRC Press.Google Scholar
  48. 48.
    Komari, T., Takakura, Y., Ueki, J., Kato, N., Ishida, Y., & Hiei, Y. (2006). In K. Wang (Ed.), Methods in molecular biology, vol. 343: binary vectors and super-binary vectors (pp. 15–41). Totowa: Humana.Google Scholar
  49. 49.
    Nadolska-Orczyk, A., Przetakiewicz, A., Kopera, K., Binka, A., & Orczyk, W. (2005). Efficient method of Agrobacterium-mediated transformation for triticale (x Triticosecale Wittmack). Journal of Plant Growth Regulation, 24, 2–10.CrossRefGoogle Scholar
  50. 50.
    Tan, M. S. F., Wang, Y., & Dykes, G. A. (2013). Attachment of bacterial pathogens to a bacterial cellulose–derived plant cell wall model: a proof of concept. Foodborne Pathogens and Disease, 10, 992–994.CrossRefGoogle Scholar
  51. 51.
    Citovsky, V., Kozlovsky, S. V., Lacroix, B., Zaltsman, A., Dafny-Yelin, M., Vyas, S., Tovkach, A., & Tzfira, T. (2007). Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiology, 9, 9–20.CrossRefGoogle Scholar
  52. 52.
    Zhu, Y., Nam, J., Carpita, N. C., Matthysse, A. G., & Gelvin, S. B. (2003). Agrobacterium-mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene. Plant Physiology, 133, 1000–1010.CrossRefGoogle Scholar
  53. 53.
    Carciofi, M., Blennow, A., Nielsen, M. M., Holm, P. B., & Hebelstrup, K. H. (2012). Barley callus: a model system for bioengineering of starch in cereals. Plant Methods, 8, 36.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Filiz Gürel
    • 1
    • 2
  • Cüneyt Uçarlı
    • 1
  • Feyza Tufan
    • 1
  • Deepak M. Kalaskar
    • 3
  1. 1.Department of Molecular Biology and GeneticsIstanbul UniversityVeznecilerTurkey
  2. 2.Research and Application Center for Biotechnology and Genetic EngineeringVeznecilerTurkey
  3. 3.Division of Surgery and Interventional ScienceUniversity College LondonLondonUK

Personalised recommendations