Skip to main content
Log in

Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using 13C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. El-Saied, H., Basta, A. H., & Gobran, R. H. (2004). Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polymer-Plastics Technology and Engineering, 43, 797–820.

    Article  CAS  Google Scholar 

  2. Wan, W. K., Hutter, J. L., Millon, L., & Guhados, G. (2006). Bacterial cellulose and its nanocomposites for biomedical applications. ACS Symposium Series, 938, 221–241.

    Article  CAS  Google Scholar 

  3. Barud, H. S., Barrios, C., & Regiani, T. (2008). Self supported silver nanoparticles containing bacterial cellulose membranes. Materials Science and Engineering C: Biomimetic and Supramolecular Systems, 28, 515–518.

    Article  CAS  Google Scholar 

  4. Borzani, W., & Desouza, S. J. (1995). Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitated liquid-media. Biotechnology Letters, 17(11), 1271–1272.

    Article  CAS  Google Scholar 

  5. Czaja, W., Romanovicz, D., & Brown, R. M., Jr. (2004). Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 11, 403–411.

    Article  CAS  Google Scholar 

  6. Watanabe, K., Hori, Y., Tabuchi, M., Morinaga, Y., Yoshinaga, F., Horii, F., Sugiyama, J., & Okano, T. (1994). Structural features of bacterial cellulose vary depending on the cultural conditions (pp. 45–50). Kyoto: Proc. Cellulose Society of Japan.

  7. Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44, 3358–3393.

    Article  CAS  Google Scholar 

  8. Bajaj, I., Chawla, P., Singhal, R., & Survase, S. (2009). Microbial cellulose: fermentative production and applications. Microbial cellulose: fermentative production and applications. Food Technology and Biotechnology, 47(2), 107–124.

    Google Scholar 

  9. Chau, F., Yang, P., Yu, C.-M., & Yen, G.-C. (2008). Investigation on the lipid- and cholesterol-lowering abilities of biocellulose. Journal of Agricultural and Food Chemistry, 56(6), 2291–2295.

    Article  CAS  Google Scholar 

  10. Ren, G., Hu, D., Cheng, E. W., Vargas-Reus, M. A., Reip, P., & Allaker, R. P. (2009). Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587–590.

    Article  CAS  Google Scholar 

  11. Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., & Rahuman, A. A. (2012). Synthesis and antimicrobial activity of copper nanoparticles. Materials Letters, 71, 114–116.

    Article  CAS  Google Scholar 

  12. Rathore, P., Hegde, A., Ginjupalli, K., & Upadhya, P. N. (2009). Evaluation of antifungal activity of additives to resilient liners: an in vitro pilot study. Artificial Organs, 23(1), 6–9.

    Google Scholar 

  13. Ramana, K. V., Tomar, A., & Singh, L. (2000). Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World Journal of Microbiology and Biotechnology, 16(3), 245–248.

    Article  CAS  Google Scholar 

  14. Muthukumarasamy, R., Revathi, G., Seshadri, S., & Lakshminarasimhan, C. (2002). Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Current Science, 83(2), 137–145.

    CAS  Google Scholar 

  15. Compant, S., Mitter, B., Colli-Mull, J. G., Gangl, H., & Sessitsch, A. (2011). Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microbial Ecology, 62(1), 188–197.

    Article  Google Scholar 

  16. Krishnan, P., Bhat, R., Kush, A., & Ravikumar, P. (2012). Isolation and functional characterization of bacterial endophytes from Carica papaya fruits. Journal of Applied Microbiology, 113(2), 308–317.

    Article  CAS  Google Scholar 

  17. Jesus, E. G., Andres, R. M., & Magno, E. T. (1971). A study on the isolation and screening of microorganisms for production of diverse textured nata. The Philippine Journal of Science, 100, 41–52.

    Google Scholar 

  18. Jahan, F., Kumar, V., Rawat, G., & Saxena, R. K. (2012). Production of microbial cellulose by a bacterium isolated from fruit. Applied Biochemistry and Biotechnology, 167(5), 1157–1171.

    Article  CAS  Google Scholar 

  19. Halib, N., Iqbal, M. C., Amin, M., & Ahmad, I. (2012). Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose. Sains Malaysiana, 41(2), 205–211.

    CAS  Google Scholar 

  20. Sun, Y., Lin, L., Deng, H., Li, J., He, B., Sun, R., & Ouyang, P. (2008). Structure of bamboo in formic acid. Bioresources, 3(2), 297–331.

    CAS  Google Scholar 

  21. Hornung, M., Ludwig, M., Gerrard, A. M., & Schmauder, H. P. (2006). Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (Part 1). Engineering in Life Science, 6(6), 537–545.

    Article  CAS  Google Scholar 

  22. Goh, W. H., Rosma, A., Kaur, B., Fazilah, A., Karim, A. A., & Rajeev, B. (2012). Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha) II. International Food Research Journal, 19, 153–158.

    CAS  Google Scholar 

  23. Watanabe, K., Tabuchi, M., Morinaga, Y., & Yoshinaga, F. (1998). Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose, 5, 187–200.

    Article  CAS  Google Scholar 

  24. Kai, A., & Ping, X. U. (1994). C.p./m.a.s. 13C N.M.R. study on microbial cellulose-fluorescent brightener complexes. Polymer, 35, 75–79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neera, Ramana, K.V. & Batra, H.V. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer. Appl Biochem Biotechnol 176, 1162–1173 (2015). https://doi.org/10.1007/s12010-015-1637-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1637-8

Keywords

Navigation